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abstract

This paper estimated the price of Nikkei 225 Option with the Markov
Switching GARCH Model, and evaluated the usefulness of this model
in the option market. Assuming that investors are risk neutral, option
prices were estimated through the Monte Carlo simulation. As a result of
the empirical analysis, it turned out that it is extremely important, in the
evaluation of option prices, to use the t-distribution for the distribution
of underlying asset price return rate and adopt state variables that follow
the Markov Switching process.

1 Introduction

The Black and Scholes (1973) model (hereinafter called ”B-S model”), which is often used in

the evaluation of European options 1), assumes that volatility 2) is constant until the matu-

rity date. However, it is considered, from the results of many empirical analyses so far, that

volatility changes over time, and so it is very important to formulate the variation in volatil-

ity and evaluate option prices. In order to understand the volatility variation clearly, Engle

(1982) proposed the Autoregressive Conditional Heteroskedasticity (ARCH) model that for-

mulates the volatility at each time as the linear function of the square of the past unexpected

shock. In addition, Bollerslev (1986) added the past volatility values to the explanatory

variables, and extended the GARCH (Generalized ARCH) model to a more general model

∗We would like to thank Toshiaki Watanabe and Hiroshi Moriyasu for many useful comments. The data
of Nikkei 225 Option used in this study was provided by Osaka Securities Exchange.

†College of Economics, Nihon University, E-mail: mitsui@eco.nihon-u.ac.jp.
‡Faculty of Business Administration, Toyo University, E-mail: satoyoshi@toyonet.toyo.ac.jp

1)The option that is exercisable only on the maturity date (right extinction date) is called a European
option, and the option that is exercisable anytime until the maturity date is called an American option.

2)Volatility is defined based on the variance or standard deviation of the return on asset, and is used as the
index of the risk of risky assets (assets whose return is uncertain, such as shares) in finance theory.
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3). Empirical studies of options with such ARCH type models have been conducted by Engle

and Mustafa (1992), Noh, Engle and Kane (1994), Saez (1997), Sabbatini and Linton (1998),

Bauwens and Lubrano (1998), and Moriyasu (1999) 4). In addition, empirical studies utilizing

the GARCH model based on local risk neutrality, which was proposed by Duan (1995), have

been conducted by Mitsui (2000), Duan and Zhang (2001), Bauwens and Lubrano (2002),

Mitsui and Watanabe (2003), and Watanabe (2003). Incidentally, it is known that in the

volatility variation model, including the ARCH model, the persistency of shock on volatility

is extremely high. However, as Diabold (1986) and Lamoureux and Lastrapes (1990) pointed

out, such persistency is considered to be caused by the structural change of volatility. Based

on this fact, Hamilton and Susmel (1994) and Cai (1994) proposed the Morkov Switching

ARCH (MS-ARCH) model by using a state variable that follows the Markov process in the

formulation of the ARCH model, in order to take into account the structural change. More-

over, Gray (1996) proposed the Markov Switching GARCH (MS-GARCH) model by taking

into account the structural change in the GARCH model, not the ARCH model. Satoyoshi

(2004) conducted an empirical analysis of TOPIX (Tokyo Stock Exchange Price Index) with

the MS-GARCH model, and found that the rate of TOPIX change underwent switching and

that this model is superior to the conventional GARCH model in forecasting volatility of

daily data. In addition, since the GARCH (1,1) model corresponds to the ARCH (∞) model,

it is considered that the MS-GARCH model is more appropriate than the MS-ARCH model

as a model describing the volatility variation used for the empirical analysis of option prices.

In this study, we conducted an empirical study of option prices in the case where volatility

follows the MS-GARCH model. The price of a European option like the Nikkei 225 Option

can be obtained readily with the Monte Carlo simulation, by assuming the risk neutrality

of investors. In addition, as a means for accelerating the convergence in the simulation, we

adopted two variance reduction techniques: antithetic variates and control variates. The

effectiveness of the MS-GARCH model in the Nikkei 225 Option market was studied by uti-

lizing these techniques. The following 4 results were obtained from this empirical study. (1)

When the MS-GARCH-t model is applied to a call option, the deviation rates of the esti-

mated option price and the market price become the lowest. (2) When the GARCH-t model

is applied to a put option, the deviation rates of the estimated option price and the market

price become the lowest. (3) The option evaluation based on the MS-GARCH model, which

was used in this study, can realize more appropriate pricing than the B-S model, which is

3)With regard to the ARCH type model, refer to Bera and Higgins (1993) and Bollerslev, Engle and Nelson
(1994), to review the statistical characteristics and methods, and Bollerslev, Chou and Kroner (1992) and
Shephard (1996) to review the empirical study of finance.

4)In these studies, the risk neutrality of investors was assumed, and so risk premium was not taken into
account. Therefore, risk assets are evaluated based on only the expectation of the return on asset, and the
expected return rate of risky assets becomes equal to that of risk-free assets.
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the current standard in the option market. (4) The assumptions that underlying asset price

return rate shows the t-distribution and that volatility follows the Markov Switching process

are very important for evaluating option prices. The brief descriptions of the following chap-

ters are as follows: Chapter 2 describes the formulation of profitability in the case where the

MS-GARCH model and risk neutrality are assumed, and mentions a model for comparison

in this study. Chapter 3 explains the method for evaluating a European Option by means of

the Monte Carlo simulation. The results of the empirical analysis are summarized in Chapter

4. Chapter 5 contains conclusions and future study themes. Chapter 6 is a supplementary

discussion.

2 Analytical Model

2.1 Markov Switching GARCH model

Gray (1996) proposed a model in which the parameters of the GARCH model depend on a

state variable that follows the Markov process and undergoes switching. When the return

rate at time t is defined as Rt and the underlying asset price at time t is defined as St, the

underlying asset price return rate Rt at time t can be defined as follows:

Rt =
St − St−1

St−1
. (2.1)

When volatility is represented by σ2
t , the MS-GARCH model can be described as follows:

Rt = µ + εt, (2.2)

εt = σtzt, σt > 0, zt ∼ i.i.d.,E[zt] = 0, V ar[zt] = 1, (2.3)

σ2
t = ωst + αstε

2
t−1 + βstE[σ2

t−1|It−2], (2.4)

ωst = ω0(1 − st) + ω1st, (2.5)

αst = α0(1 − st) + α1st, (2.6)

βst = β0(1 − st) + β1st. (2.7)

The constant term µ in Equation (2.2) represents expected return rate, and εt depicts error

term, and it is assumed that the return rate has no autocorrelation. i.i.d. means “independent

and identically distributed.” E[·], V ar[·], and E[·|·] represent expectation, variance, and

conditional expectation, respectively. Volatility σ2
t is the conditional variance of εt with the

information set It−1 = {Rt−1, Rt−2, · · · } up to time t − 1 and the state variable st at time

t being the conditions, that is, σ2
t = V ar[εt|It−1, st]. It−2 in Equation (2.4) represents the

information set It−2 = {Rt−2, Rt−3, · · · } up to time t − 2. st in Equations (2.5)，(2.6), and

(2.7) represents a state variable that follows the Markov process, and its transition probability
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is expressed as follows:

Pr[st = 1|st−1 = 1] = p, Pr[st = 0|st−1 = 0] = q, (2.8)

where Pr[st = j|st−1 = i] is the probability of the transition from state i to state j.

Assuming that the volatility when st = 0 is σ2
0t and the volatility when st = 1 is σ2

1t,

volatility σ2
t becomes as follows:{

σ2
0t = ω0 + α0ε

2
t−1 + β0E[σ2

t−1|It−2], when st = 0,
σ2

1t = ω1 + α1ε
2
t−1 + β1E[σ2

t−1|It−2], when st = 1.

If the error term follows the normal distribution, zt in Equation (2.3) becomes as follows:

zt ∼ i.i.d.N (0, 1) . (2.9)

If the error term follows the t-distribution, zt becomes as follows:

zt ∼ i.i.d.t (0, 1, ν) . (2.10)

Here, ν represents degree of freedom, and the variance of zt has been standardized to be one.

Assuming that a state variable that follows the Markov Switching is directly introduced

to the GARCH model, the equation for volatility becomes as follows:

σ2
t = ωst + αstε

2
t−1 + βstσ

2
t−1.

However, in this model, σ2
t depends on not only st at time t but also all state variables

(st, st−1, · · · , s1) up to time t, and so it is impossible to conduct estimation with the maximum

likelihood method. Accordingly, the model of Gray (1996) replaces the third term in the right-

hand side σ2
t−1 with E[σ2

t−1|It−2]. Under the condition of It−2, σ2
t−1 becomes equal to σ2

0,t−1,

when Pr[st−1 = 0|It−2], and σ2
1,t−1, when Pr[st−1 = 1|It−2]. Therefore, E[σ2

t−1|It−2] can be

calculated as follows:

E[σ2
t−1|It−2] = σ2

0,t−1 Pr[st−1 = 0|It−2] + σ2
1,t−1 Pr[st−1 = 1|It−2].

Here, σ2
t depends on only st at time t, and so it is possible to conduct estimation with the

maximum likelihood method by obtaining the value of Pr[st = j|It−1](j = 0, 1) by means of

the filtering technique of Hamilton (1989) (Hamilton Filter). The detailed estimation method

is described in the supplementary discussion in Section 6.1.

2.2 Risk Neutrality of Investors and Formulation of Return Rate

In this study, it is assumed that investors are risk neutral. Under this assumption, the

expected rate of return µ becomes equal to the risk-free rate, and when the risk-free rate is

4



represented by r, the underlying asset price return rate Rt in Equation (2.2) can be expressed

as follows:

Rt = r + εt. (2.11)

Under the condition where the information It−1 up to time t− 1 is provided, the expectation

in Equation (2.11) E[Rt|It−1] = r is equal to r. Rt is expressed by Equation (2.1), and when

it is substituted, the following equation is obtained:

E

[
St − St−1

St−1

∣∣∣∣ It−1

]
= r.

That is,

E[St|It−1] = St−1(1 + r).

Then, risk neutrality can be confirmed.

Incidentally, in this section, the underlying asset price return rate is defined as Equation

(2.1), but in theory of financial engineering, including options, Rt is expressed by the following

equation with continuous compounding, in general:

Rt = ln St − ln St−1.

Here, it is assumed that the volatility σ2
t follows the ordinary GARCH model that does not

include Markov Switching. Under the assumption of risk neutrality, the underlying asset

price return rate can be formulated as follows:

Rt = r∗ − 1
2
σ2

t + εt, (2.12)

where r∗ is the interest rate of continuous compounding, and differs from r in Equation (2.11)
5). Compared with Equation (2.11), it is obvious that the term − (1/2)σ2

t is added as the

second term of the right-hand side in Equation (2.12). When zt follows the standard normal

distribution, the underlying asset price return rate follows a normal distribution with the

following expectation and variance, under the condition that the information It−1 up to time

t − 1 is provided,

E [Rt|It−1] = r∗ − 1
2
σ2

t , V ar [Rt|It−1] = σ2
t .

When ln St is used, the following expression is obtained:

ln St|It−1 ∼ N

(
ln St−1 + r∗ − 1

2
σ2

t , σ
2
t

)
.

5)Between r and the continuously-compounded interest rate r∗, there is the following relation: r∗ =
ln (1 + r).
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Therefore, it can be found that St follows a lognormal distribution having the following

expectation:

E [St|It−1] = exp
(

lnSt−1 + r∗ − 1
2
σ2

t +
1
2
σ2

t

)
= St−1 exp(r∗).

This equation indicates that risk neutrality is true. Therefore, the formulation as Equation

(2.12) can be made, when the underlying asset price return rate is calculated with the contin-

uous compounding and zt follows the standard normal distribution and volatility follows the

normal GARCH model. However, if the error term zt does not follow the normal distribution

but follows the t-distribution, the second term in the right-hand side in Equation (2.12) must

be modified, but it is impossible to obtain the new term analytically. Accordingly, in this

study, the underlying asset price return rate is calculated as Equation (2.1) and Equation

(2.11) is adopted.

2.3 Model for Comparison

This study analyzes the following normal GARCH model and the Markov Switching (MS)

model, as well as the MS-GARCH model mentioned in Section 2.1.

GARCH model:

Rt = µ + εt,

εt = σtzt, σt > 0, zt ∼ i.i.d.,E[zt] = 0, V ar[zt] = 1, (2.13)

σ2
t = ω + αε2t−1 + βσ2

t−1. (2.14)

MS model:

Rt = µ + εt,

εt = σtzt, σt > 0, zt ∼ i.i.d.,E[zt] = 0, V ar[zt] = 1, (2.15)

σ2
t = ω0(1 − st) + ω1st. (2.16)

Here, the volatility σ2
t becomes either the ω0 or ω1 condition.

In this study, the following 6 kinds of models in which volatility changes and the B-S

model are applied for the pricing of options, and these models are compared. “-n” implies

that the error term follows the normal distribution, and “-t” means that the error term

follows the t-distribution.

1. MS-GARCH-n · · · (2.3) – (2.9), (2.11).

2. MS-GARCH-t · · · (2.3) – (2.8), (2.10), (2.11).
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3. GARCH-n · · · (2.9), (2.11), (2.13), (2.14).

4. GARCH-t · · · (2.10), (2.11), (2.13), (2.14).

5. MS-n · · · (2.9), (2.11), (2.15), (2.16).

6. MS-t · · · (2.10), (2.11), (2.15), (2.16).

7. B-S · · · B-S model (Black and Scholes (1973)).

Here, the European call option price CBS
T and the European put option price PBS

T at time T

with an exercise price of K and a current maturity of τ can be obtained with the following

B-S model.

CBS
T = ST N(d1) − Ke−r∗τN(d2), (2.17)

PBS
T = −STN(−d1) + Ke−r∗τN(−d2), (2.18)

d1 =
ln (ST /K) + (r∗ + σ2/2)τ

σ
√

τ
,

d2 = d1 − σ
√

τ ,

N(di) =
∫ di

−∞

1√
2π

exp
(
−x2

2

)
dx, i = 1, 2.

Here, N(·) represents the distribution function of the standard normal distribution.

3 Method for Obtaining the Option Price

3.1 Option price under the assumption of risk neutrality

When investors are risk neutral, the price of a European Option becomes the present dis-

counted value that is calculated by discounting the expectation of the option price at maturity

with the interest rate of risk-free assets r. Namely, when it is assumed that the T + τ is

maturity and that CT is the price of the call option of the exercise price K at time T and

that PT is the put option price, the following expressions are obtained:

CT = (1 + r)−τE [Max (ST+τ − K, 0)] , (3.1)

PT = (1 + r)−τE [Max (K − ST+τ , 0)] . (3.2)

Here, ST+τ represents the underlying asset price at the maturity of the option. In the case

of the MS-GARCH model, it is impossible to obtain the expectation in the right-hand side

analytically, and so this is estimated by means of the Monte Carlo simulation 6) . Simulation
6)As another method, Duan and Simonato (1998) proposed a method utilizing the empirical martingale

simulation. The Monte Carlo experiment showed that the empirical martingale simulation is more efficient
than the Monte Carlo simulation and the moment matching simulation developed by Barraquand (1995). In
addition, Duan, Gauthier and Simonato (1999) concluded that the empirical martingale quasi-monte carlo
simulation is more efficient than the empirical martingale simulation.
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is conducted n times, to obtain n underlying asset prices at maturity ST+τ , and then these

are expressed by
(
S

(1)
T+τ , S

(2)
T+τ , . . . , S

(n)
T+τ

)
, where S

(i)
T+τ represents the underlying asset price

at maturity obtained through the i-th pass. When n is sufficiently large, the expectations in

Equations (3.1) and (3.2) can be estimated with the following equations, because of the law

of large numbers.

3.2 Procedures of the Monte Carlo Simulation

The procedures for calculating an option price with the Monte Carlo simulation in this

study’s model are as follows, where it is assumed that the error term of the MS-GARCH

model follows the normal distribution.

[1] Estimate the unknown parameters of the MS-GARCH model with the maximum like-

lihood method, using the samples {R1, R2, . . . , RT }.

[2] Sample
{
z
(i)
T+1, z

(i)
T+2, . . . , z

(i)
T+τ

}n

i=1
from independent standard normal distributions.

[3] Sample
{

u
(i)
T+1, u

(i)
T+2, . . . , u

(i)
T+τ

}n

i=1
from independent standard rectangular distribu-

tions.

[4] Obtain the state variables following the Markov process
{
s
(i)
T+1, s

(i)
T+2, . . . , s

(i)
T+τ

}n

i=1
,

using uniform random numbers obtained at Step [3] and the transition probabilities p

and q estimated with the maximum likelihood method.

[5] Calculate
{

R
(i)
T+1, R

(i)
T+2, . . . , R

(i)
T+τ

}n

i=1
by substituting the values at Steps [2] and [4]

into the MS-GARCH model.

[6] Obtain the underlying asset price
(
S

(1)
T+τ , S

(2)
T+τ , . . . , S

(n)
T+τ

)
at the maturity time T + τ

of the option with the following equation:

S
(i)
T+τ = ST

τ∏
s=1

(
1 + R

(i)
T+s

)
, i = 1, 2, . . . , n. (3.3)

[7] Calculate the call option’s price CT and the put option’s price PT with the following

equation:

It is considered that the sufficient number of times of the Monte Carlo simulation is about

10,000 (n = 10,000). In order to reduce the variances of CT and PT , we propose the method

of concurrently using the control variates and the antithetic variates, which are representative

variance reduction techniques.

Incidentally, at Step [4], the state variables that follow the Markov process are obtained

using uniform random numbers and transition probabilities, but this method cannot be
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applied for the state variable sT+1 at time T + 1, the starting point. This is because even

after the maximum likelihood method at Step [1], the value of the state variable sT at time

T remains unknown, and it is impossible to calculate the state variable sT+1 from uniform

random numbers and transition probabilities. Accordingly, with regard to sT+1, the following

calculation is conducted utilizing the probability Pr [sT = i|IT ] and the transition probability

Pr [sT+1 = j|sT = i].

Pr [sT+1 = j|IT ] =
1∑

i=0

Pr [sT+1 = j|sT = i] Pr [sT = i|IT ] .

From this probability, sampling is carried out．

4 Empirical Results of Nikkei 225 Option

4.1 Data

The options used for the empirical analysis in this study were Nikkei 225 call options (number

of samples: 707) and put options (number of samples: 782) from May 2000 (expiration

month) to MAR. 2006 (expiration month) 7) . We analyzed the closing prices 20 business

days (τ = 20) before maturity of these options 8) . As the data of the risk-free assets’ interest

rate r, the overnight unsecured call money was used 9) . In addition, as the basic assumption,

it was assumed that transaction costs, taxes, and dividends do not exist and any margin is

not necessary for these options.

In order to estimate the parameters of the MS-GARCH model and the GARCH model,

we used the closing prices of Nikkei 225 Stock Index 20 business days and 2,500 business

days before maturity 10). For instance, in the case of the first expiration month, May 2000,

the dates of option pricing are Apr. 11, 2000, which is 20 business days before maturity, and

Feb. 21, 1990, which is 2,500 business days before maturity, and so when the daily change

rate is calculated with Equation (2.1), the sampling period becomes from Feb. 22, 1990 to

Apr. 11, 2000 (size of sample: T = 2,500). Using the daily return rates in this period, the

model parameters are estimated, and based on the estimated parameters, the option prices

are obtained through simulation. The same calculation is conducted from the next expiration

month, and so 71 different sampling periods are defined for expiration months. In the case

of the last expiration month, Mar. 2006, the day 20 business days before maturity is Feb.

7)The data of Nikkei 225 Option was provided by Osaka Securities Exchange.
8)The closing price of Nikkei 225 Option and the closing price of Nikkei 225 Stock Index may have been

priced, but it was ignored in this study.
9)Nikkei NEEDS-FinancialQUEST was used as the data of the overnight unsecured call money.

10)Nikkei NEEDS-FinancialQUEST was used as the data of Nikkei 225 Stock Index (Nikkei Stock Average).
In addition, the program language Ox (http://www.doornik.com/ox/) was used for estimating parameters.
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Table 1: Summary Statistics for the Nikkei 225 Stock Index Daily Returns Rt

Sample Period: Feb. 22, 1990 – Feb. 10, 2006

Sample Size Mean Std Dev. Skewness Kurtosis Max. Min. LB2(12)
3935 −0.0001 0.0149 0.2898 6.4801 0.1324 −0.0698 231.0423

(0.0002) (0.0390) (0.0781)
note: ( ) denotes standard error. The standard error of the mean, skewness, and kurtosis
estimates calculate σ̂/

√
N,
�

6/N , and
�

24/N respectively, where N=sample size and σ̂
= standard deviation. LB2(12) is the heteroskedasticity-corrected Ljung = Box statistic
following Diebold [1988]．

10, 2006. Therefore, the entire sampling period of the daily change rates of Nikkei 225 Stock

Index is from Feb. 22, 1990 to Feb. 10, 2006.

Table 1 shows the basic statistics of the daily change rates of Nikkei 225 Stock Index.

The value of kurtosis is 6.4065, which is much larger than 3, the normal distribution’s value,

and so it is obvious that the distribution of the daily change rates has a thicker tail than

a normal distribution. Such tail thickness may be caused by the temporal fluctuations in

volatility. LB2(12) in the last line of the table is the Ljung-Box statistics for testing the null

hypothesis that the first-order to twelfth-order autocorrelations when the daily change rate

is squared are all zero 11) . These statistics follow a χ2 distribution with a degree of freedom

of 12. The value of LB2(12) is 212.9053, which is very large. The critical value of the χ2

distribution with a degree of freedom of 12 at the 1 % significance level is 26.22, and so it is

considered that the daily change rate has significant nonlinear autocorrelation. From these

results, it is found that it is necessary to use some volatility change model, like the model

used in this study, in order to understand the temporal change of Nikkei 225 Stock Index.

Tables 2 to 7 tabulate the average, minimum, and maximum values of the parameters

of each model in the 60 different sampling periods for each expiration month. From the

results of the MS-GARCH-n model in Table 2, it is found that the averages of the transition

probabilities are p = 0.964 and q = 0.976, which are very high. This indicates that once

switching occurs, its state lingers for a long time. The persistency of the shock toward

volatility in the GARCH part becomes as follows in each state: α0+β0 = 0.423 and α1+β1 =

0.710, and so it is obvious that the value of persistency varies. Such difference in persistency

is also represented by the results of the MS-GARCH-t model in Table 3. However, persistency

becomes higher on average in each state when it is assumed that the error term follows the

t-distribution, compared with the case of a normal distribution.

According to the results of the GARCH-n model in Table 4 and the GARCH-t model in

11)Here, the heteroskedasticity of the Ljung-Box statistics has been modified by Diebold (1988).
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Table 2: Estimation Results for MS-GARCH-n Model

Rt = r + εt

εt = σtzt, σt > 0, zt ∼ i.i.d.N(0, 1)

σ2
t = ωst + αstε

2
t−1 + βstE[σ2

t−1|It−2]
ωst = ω0(1 − st) + ω1st

αst = α0(1 − st) + α1st

βst = β0(1 − st) + β1st

p q ω0 ω1 α0 α1 β0 β1

Mean 0.925 0.963 0.439 1.464 0.001 0.019 0.452 0.811
Min. 0.514 0.822 0.000 0.000 0.000 0.000 0.321 0.527
Max. 0.979 0.984 0.634 2.526 0.014 0.078 0.674 2.048

α0 + β0 α1 + β1 Log-likelihood
Mean 0.453 0.831 −4352.381
Min. 0.321 0.579 −4407.960
Max. 0.674 2.048 −4264.429

Table 5, the persistency of volatility is as follows: α + β = 0.973 and α + β = 0.983, which

are nearly one. Such high persistency is the same as the results of most previous studies.

Compared with the results of the MS-GARCH model, the value of the volatility’s persistency

is smaller in the MS-GARCH model than the GARCH model, regardless of whether the

error term follows a normal distribution or the t-distribution. From this, it is found that the

persistency of volatility described in the GARCH model decreases when the state variable

that follow the Markov Switching is used in the GARCH model. In addition, when the average

of the log likelihood of each model is compared, the highest value is in the MS-GARCH-t

model, and the next is in the GARCH-t model. In order to judge which model is appropriate,

it is necessary to test whether or not switching occurs. However, as commonly known, under

the null hypothesis of no Markov Switching it is impossible to distinguish some parameters

in the models, and the test statistics do not follow any ordinary asymptotic distribution; and

so it becomes difficult to conduct the likelihood ratio test. Some test methods considering

this problem were proposed by Hansen (1992, 1996) and Garcia (1998), but their methods

were not conducted in this study because the objective of this study is to evaluate the option

price.
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Table 3: Estimation Results for MS-GARCH-t Model

Rt = r + εt

εt = σtzt, σt > 0, zt ∼ i.i.d.t(0,1, ν)

σ2
t = ωst + αstε

2
t−1 + βstE[σ2

t−1|It−2]
ωst = ω0(1 − st) + ω1st

αst = α0(1 − st) + α1st

βst = β0(1 − st) + β1st

p q ω0 ω1 α0 α1 β0 β1

Mean 0.994 0.991 0.206 0.333 0.013 0.065 0.605 0.872
Min. 0.986 0.985 0.012 0.089 0.000 0.046 0.103 0.790
Max. 1.000 1.000 0.696 0.735 0.066 0.097 0.904 0.902

ν α0 + β0 α1 + β1 Log-likelihood
Mean 8.145 0.618 0.937 −4321.839
Min. 6.930 0.103 0.875 −4382.226
Max. 9.929 0.970 0.965 −4249.719

Table 4: Estimation Results for GARCH-n Model

Rt = r + εt

εt = σtzt, σt > 0, zt ∼ i.i.d.N(0, 1)

σ2
t = ω + αε2t−1 + βσ2

t−1

ω α β α + β Log-likelihood
Mean 0.059 0.083 0.892 0.975 −4375.967
Min. 0.032 0.072 0.869 0.966 −4425.958
Max. 0.077 0.103 0.909 0.987 −4294.630

Table 5: Estimation Results for GARCH-t Model

Rt = r + εt

εt = σtzt, σt > 0, zt ∼ i.i.d.t(0,1, ν)

σ2
t = ω + αε2t−1 + βσ2

t−1

ω α β ν α + β Log-likelihood
Mean 0.033 0.071 0.916 7.722 0.987 −4328.645
Min. 0.021 0.062 0.892 6.483 0.978 −4387.870
Max. 0.049 0.092 0.927 9.809 0.991 −4255.932
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Table 6: Estimation Results for MS-n Model

Rt = r + εt

εt = σtzt, σt > 0, zt ∼ i.i.d.N(0, 1)

σ2
t = ω0(1 − st) + ω1st

p q ω0 ω1 Log-likelihood
Mean 0.962 0.983 1.191 4.408 −4366.123
Min. 0.947 0.980 1.110 3.983 −4421.448
Max. 0.970 0.987 1.291 5.249 −4294.827

Table 7: Estimation Results for MS-t Model

Rt = r + εt

εt = σtzt, σt > 0, zt ∼ i.i.d.t(0,1, t)

σ2
t = ω0(1 − st) + ω1st

p q ω0 ω1 ν Log-likelihood
Mean 0.976 0.988 1.226 4.076 10.322 −4352.254
Min. 0.968 0.985 0.980 3.051 7.802 −4410.443
Max. 0.990 0.990 1.340 4.976 14.889 −4279.640
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Table 8: Moneyness

Moneyness Call Option Put Option
S/K < 0.91 deep-out-of-the-money (DOTM) DITM

0.91 ≤ S/K < 0.97 out-of-the-money (OTM) ITM
0.97 ≤ S/K ≤ 1.03 at-the-money (ATM) ATM
1.03 < S/K ≤ 1.09 in-the-money (ITM) OTM

1.09 < S/K deep-in-the-money (DITM) DOTM

4.2 Comparison of the Estimated Option Prices

Using the estimated values of option prices in the 7 kinds of models mentioned in Section 2.3

and actual market prices, the mean error rate (MER) and the root mean squared error rate

(RMSER) are calculated, and each model is compared and discussed, as follows:

MER =
1
m

m∑
i=1

(
X̂estimated

i − Xmarket price
i

Xmarket price
i

)
, (4.1)

RMSER =

√√√√ 1
m

m∑
i=1

(
X̂estimated

i − Xmarket price
i

Xmarket price
i

)2

, X = C,P. (4.2)

Here, X̂estimated
i is the option price estimated through the Monte Carlo simulation, or the

theoretical price of the B-S model, and Xmarket price
i represents the market option price. m is

the number of samples. In addition, moneyness was categorized into the following 5 types by

referring to the study of Bakshi, Cao and Chen (1997) (Refer to Table 8): (1) If S/K < 0.91,

the call option is deep-out-of-the-money (DOTM) 12) , and the put option is deep-in-the-

money (DITM) 13) ; (2) If 0.91 ≤ S/K < 0.97, the call option is out-of-the-money (OTM),

and the put option is in-the-money (ITM); (3) If 0.97 ≤ S/K ≤ 1.03, the call and put options

are both at-the-money (ATM) 14) ; (4) If 1.03 < S/K ≤ 1.09, the call option is ITM, and

the put option is OTM; (5) If S/K > 1.09, the call option is DITM, and the put option

is DOTM. In the case of the call option, the number of samples is 216 for DOTM, 114 for

OTM, 98 for ATM, 93 for ITM, and 186 for DITM. In the case of the put option, the number

is 247 for DOTM, 96 for OTM, 98 for ATM, 99 for ITM, and 242 for DITM. The calculation

results of MER and RMSER are tabulated in Tables 9 and 10.

12)It is also called “far-out-of-the-money.”
13)It is also called “far-in-the-money.”
14)Actually, it is rare that the option becomes ATM, and so the option around ATM is sometimes called

“near-the-money” option.
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Table 9: Estimation Results for Call Option

MER

MS-GARCH GARCH MS
B-S m

n t n t n t
DOTM 0.2534 0.1980 0.1162 0.3893 0.4846 0.5281 −0.2174 216
OTM 0.3274 0.0436 0.2056 0.1465 0.4898 0.5115 −0.0977 114
ATM 0.0213 −0.0399 0.0094 −0.0149 0.0583 0.0693 −0.0883 98
ITM −0.0083 −0.0145 −0.0120 −0.0134 −0.0051 −0.0010 −0.0211 93
DITM −0.0044 −0.0034 −0.0042 −0.0032 −0.0041 −0.0030 −0.0023 186
Total 0.1309 0.0592 0.0673 0.1379 0.2334 0.2525 −0.0978 707

RMSER

MS-GARCH GARCH MS
B-S m

n t n t n t
DOTM 1.2981 0.9976 1.0799 1.2861 1.8543 1.7660 1.3021 216
OTM 0.9948 0.4060 0.7144 0.5862 1.4988 1.4331 0.6333 114
ATM 0.2586 0.1417 0.2156 0.1868 0.3467 0.3366 0.2342 98
ITM 0.0803 0.0680 0.0755 0.0722 0.0842 0.0802 0.0830 93
DITM 0.0744 0.0743 0.0738 0.0736 0.0746 0.0745 0.0733 186
Total 0.8282 0.5792 0.6688 0.7535 1.1966 1.1410 0.7698 707

Table 10: Estimation Results for Put Option

MER

MS-GARCH GARCH MS
B-S m

n t n t n t
DOTM −0.5925 −0.6608 −0.7060 −0.6162 −0.5353 −0.5556 −0.8279 247
OTM −0.0506 −0.2176 −0.1260 −0.1644 0.0285 0.0370 −0.3444 96
ATM −0.0139 −0.0587 −0.0224 −0.0418 0.0166 0.0294 −0.0955 98
ITM −0.0015 −0.0033 −0.0036 −0.0028 −0.0001 0.0055 −0.0025 99
DITM −0.0001 −0.0003 −0.0007 0.0002 −0.0003 −0.0006 0.0025 242
Total −0.1953 −0.2433 −0.2419 −0.2204 −0.1636 −0.1667 −0.3153 782

RMSER

MS-GARCH GARCH MS
B-S m

n t n t n t
DOTM 0.7050 0.7263 0.7592 0.6832 0.7210 0.7282 0.8756 247
OTM 0.4175 0.3394 0.3294 0.3079 0.5987 0.5650 0.5116 96
ATM 0.2199 0.1548 0.1876 0.1722 0.2856 0.2788 0.2373 98
ITM 0.0918 0.0881 0.0870 0.0876 0.0933 0.0939 0.1014 99
DITM 0.0704 0.0709 0.0715 0.0717 0.0702 0.0703 0.0718 242
Total 0.4325 0.4316 0.4498 0.4066 0.4701 0.4680 0.5332 782
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With regard to the call option, the following two points were clarified:

1. Under the MER standard, when the MS-GARCH-t model is used, the difference be-

tween the estimated option price and the market option price becomes the smallest,

and it becomes the second smallest when the GARCH-n model is adopted. In addition,

it was found that the model allowing volatility changes can correct the underpricing

of the B-S model with respect to DOTM, OTM, ATM, and ITM. Especially, this is

remarkable in the cases of DOTM and OTM.

2. Under the RMSER standard, when the MS-GARCH-t model is used, the rate of de-

viation between the estimated and market option prices becomes the smallest. This

indicates that the performance of option pricing with the MS-GARCH-t model is the

most outstanding, in the case of the call option.

In addition, the results for the put option are as follows:

1. Under the MER standard, when the MS-n model is used, the difference between the

estimated and market option prices is the smallest.

2. Under the RMSER standard, when the GARCH-t model is used, the rate of deviation

between the estimated and market option prices becomes the smallest, and it becomes

the second smallest when the MS-GARCH-t model is adopted. This indicates that, in

the case of the put option, the performance of option pricing with the GARCH-t model

is the most outstanding.

In summary, it turned out that the option evaluation based on the MS-GARCH model

used in this study can realize more appropriate pricing than the B-S model, which is now used

as the bench mark in the option market. In addition, it was found that it is very important

for the evaluation of option prices to assume that the underlying asset price return rate

follows the t-distribution and that volatility undergoes the Markov Switching process.

4.3 Categorization based on Volume and Period until Maturity

The analyses so far were categorized based on moneyness, without taking into account the

volume of options. However, in the actual option trading, there are a lot of options whose

volume is extremely low, and there is a possibility that the price setting of such options is

distorted. Accordingly, options were categorized into the 4 groups: the whole dealings, the

dealings whose volume is over 50, the dealings whose volume is over 100, and the dealings

whose volume is over 200. In addition, although the closing prices 20 business days (τ = 20)

before maturity of options have been analyzed, calculation is conducted in the cases of τ = 10
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and τ = 30, too, because the option evaluation may vary according to the period until

maturity.

The results for the call option are shown in Table 11. When seeing MER in the whole

trading, the value of MER in the GARCH-t model is nearest to zero when τ = 10, and

the value of MER in the MS-GARCH-t model is nearest to zero when τ = 20, the value of

MER in the MS-GARCH-t model is nearest to zero when τ = 30. This is the same even

if the volume is limited to over 50, over 100, or over 200. With regard to RMSER in the

whole dealings, the values in the MS-GARCH-t model become the smallest when τ = 10

and τ = 20, and the value in the GARCH-n model becomes the smallest when τ = 30, and

RMSER does not depend on volume. The results for the put option are shown in Table 12.

The MER value becomes nearest to zero in the MS-t model regardless of volume and the

period until maturity. In addition, the RMSER value becomes the smallest in the GARCH-t

model, and RMSER does not depend on volume or the period until maturity. The above

analysis results do not differ significantly from those mentioned in Section 4.2. Therefore, it

became clear that it is still important to introduce a state variable that follows the Markov

Switching to the volatility change and to assume the t-distribution for the distribution of the

return rate of the underlying asset price, even if the options whose volume is low are removed

or if the period until the maturity is altered.
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Table 11: Results for Call Option: Categorization based on Volume and Period until Maturity

MER

MS-GARCH GARCH MS
B-S m

n t n t n t
all
τ = 10 −0.0405 −0.0666 −0.0654 −0.0200 0.0552 0.0640 −0.1899 629
τ = 20 0.1309 0.0592 0.0673 0.1379 0.2334 0.2525 −0.0978 707
τ = 30 0.2823 0.1313 0.2360 0.2635 0.4008 0.4261 −0.0542 668
over 50
τ = 10 −0.0168 −0.0533 −0.0501 0.0104 0.1065 0.1258 −0.2340 403
τ = 20 0.2073 0.0969 0.1135 0.2012 0.3424 0.3732 −0.1064 473
τ = 30 0.4716 0.2145 0.3870 0.3763 0.6427 0.6640 −0.0751 397
over 100
τ = 10 −0.0067 −0.0596 −0.0426 0.0130 0.1196 0.1402 −0.2395 372
τ = 20 0.2302 0.1069 0.1252 0.2140 0.3787 0.4103 −0.1026 423
τ = 30 0.4913 0.2031 0.4035 0.3671 0.6962 0.7164 −0.0993 350
over 200
τ = 10 0.0106 −0.0468 −0.0255 0.0300 0.1396 0.1629 −0.2333 345
τ = 20 0.2342 0.1161 0.1371 0.2196 0.3856 0.4213 −0.0870 393
τ = 30 0.5444 0.2155 0.4334 0.3814 0.7703 0.7864 −0.1348 318

RMSER

MS-GARCH GARCH MS
B-S m

n t n t n t
all
τ = 10 0.8128 0.6462 0.7837 0.6956 0.9727 0.9199 0.7027 629
τ = 20 0.8282 0.5792 0.6688 0.7535 1.1966 1.1410 0.7698 707
τ = 30 1.1683 0.7234 0.9351 0.8767 1.6490 1.5956 0.8231 668
over 50
τ = 10 0.9872 0.7726 0.9503 0.8388 1.1813 1.1208 0.8419 403
τ = 20 0.9909 0.6764 0.7935 0.8900 1.4331 1.3715 0.9129 473
τ = 30 1.4649 0.8845 1.1687 1.0375 2.0806 2.0007 0.9893 397
over 100
τ = 10 1.0184 0.7723 0.9785 0.8517 1.2206 1.1592 0.8530 372
τ = 20 1.0191 0.6942 0.8112 0.8976 1.4910 1.4270 0.9571 423
τ = 30 1.5016 0.8796 1.2006 1.0278 2.1972 2.1128 1.0179 350
over 200
τ = 10 1.0497 0.7934 1.0072 0.8776 1.2618 1.1976 0.8720 345
τ = 20 1.0140 0.7135 0.8336 0.9219 1.4977 1.4409 0.9814 393
τ = 30 1.5715 0.9151 1.2503 1.0631 2.3023 2.2129 1.0423 318
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Table 12: Results for Put Option: Categorization based on Volume and Period until Maturity

MER

MS-GARCH GARCH MS
B-S m

n t n t n t
all
τ = 10 −0.2255 −0.2372 −0.2524 −0.2249 −0.1923 −0.1831 −0.3046 696
τ = 20 −0.1953 −0.2433 −0.2419 −0.2204 −0.1636 −0.1667 −0.3153 782
τ = 30 −0.1328 −0.2188 −0.1692 −0.1551 −0.1086 −0.1075 −0.2965 718
over 50
τ = 10 −0.3002 −0.3221 −0.3462 −0.3039 −0.2432 −0.2287 −0.4363 403
τ = 20 −0.2561 −0.3302 −0.3259 −0.2950 −0.2069 −0.2094 −0.4420 490
τ = 30 −0.1769 −0.3316 −0.2497 −0.2355 −0.1331 −0.1367 −0.4744 412
over 100
τ = 10 −0.3161 −0.3399 −0.3658 −0.3204 −0.2544 −0.2388 −0.4634 371
τ = 20 −0.2703 −0.3516 −0.3460 −0.3147 −0.2160 −0.2187 −0.4752 447
τ = 30 −0.1799 −0.3505 −0.2610 −0.2582 −0.1249 −0.1300 −0.5034 375
over 200
τ = 10 −0.3211 −0.3475 −0.3742 −0.3271 −0.2554 −0.2394 −0.4788 345
τ = 20 −0.2810 −0.3698 −0.3619 −0.3300 −0.2224 −0.2259 −0.5026 412
τ = 30 −0.1690 −0.3547 −0.2557 −0.2568 −0.1067 −0.1124 −0.5213 327

RMSER

MS-GARCH GARCH MS
B-S m

n t n t n t
all
τ = 10 0.4825 0.4549 0.4818 0.4468 0.4981 0.4860 0.5466 696
τ = 20 0.4325 0.4316 0.4498 0.4066 0.4701 0.4680 0.5332 782
τ = 30 0.4937 0.4122 0.4246 0.4078 0.5397 0.5145 0.5346 718
over 50
τ = 10 0.5621 0.5239 0.5605 0.5151 0.5856 0.5696 0.6539 403
τ = 20 0.4923 0.4883 0.5096 0.4546 0.5458 0.5384 0.6236 490
τ = 30 0.6117 0.5005 0.5202 0.5021 0.6752 0.6424 0.6686 412
over 100
τ = 10 0.5766 0.5362 0.5749 0.5279 0.6017 0.5850 0.6736 371
τ = 20 0.5059 0.5019 0.5231 0.4680 0.5624 0.5537 0.6440 447
τ = 30 0.6243 0.5157 0.5324 0.5020 0.6971 0.6631 0.6875 375
over 200
τ = 10 0.5823 0.5408 0.5794 0.5318 0.6100 0.5930 0.6835 345
τ = 20 0.5189 0.5150 0.5360 0.4796 0.5794 0.5700 0.6618 412
τ = 30 0.6416 0.5198 0.5379 0.5089 0.7203 0.6836 0.7037 327
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5 Conclusion and Future Themes

In this paper, we focused on the option evaluation with the volatility-changing model, es-

timated the Nikkei 225 Option price with the GARCH model and its extended version-the

MS-GARCH model proposed by Gray (1996)-and conducted an empirical test of the useful-

ness of the MS-GARCH model in the Nikkei 225 Option market. The major outcomes of

this study are itemized below.

1. In the case of the call option, under the MER standard, the performance of option

pricing with the MS-GARCH-t model is the most outstanding, and under the RMSER

standard, the performance of option pricing with the MS-GARCH-t model is the most

outstanding.

2. In the case of the put option, under the MER standard, the performance of option

pricing with the MS-n model is the most outstanding, and under the RMSER standard,

the performance of option pricing with the GARCH-t model is the most outstanding.

3. The option evaluation based on the MS-GARCH model, which was used in this study,

can realize more appropriate pricing than the B-S model, which is now used as the

standard in the option market.

4. It is very important in the evaluation of option prices to assume that the underlying as-

set price return rate follows the t-distribution and that volatility undergoes the Markov

Switching process.

The future study subjects include the following four:

1. As the MS-GARCH model, Klaassen (2002) and Haas, Mittnik and Paolella (2004)

also proposed models, and so it is necessary to make a comparison with the option

evaluations based on these models

2. Make a comparison with the option prices and performance based on the stochastic

volatility model, which is another representative volatility-changing model.

3. Conduct formulation, taking into account risk premium in the process of the underlying

asset return rate, rather than assuming risk neutrality of investors.

4. Analyze the option prices in the volatility-changing model in detail. Study particularly

implied volatility and volatility smile, etc.
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6 Supplementary Discussion

6.1 Estimation Method based on the Maximum Likelihood Method in the
MS-GARCH Model

The set of parameters is represented by θ. If the error term of the MS-GARCH model

follows a normal distribution, θ = (ω0, ω1, α0, α1, β0, β1, p, q), and if the error term follows

the t-distribution, a degree of freedom ν is added, that is, θ = (ω0, ω1, α0, α1, β0, β1, p, q, ν).

Then, the likelihood function L(θ) becomes as follows:

L (θ) = f (R1, R2, · · · , RT |θ)

=
T∏

t=1

f (Rt|It−1; θ)

=
T∏

t=1

1∑
st=0

f (Rt, st|It−1; θ)

=
T∏

t=1

1∑
st=0

f (Rt|st, It−1; θ) f (st|It−1; θ) .

The state variable st cannot be observed, and so the marginal density f (Rt|It−1; θ) of Rt is

obtained by adding the joint distributions f (Rt, st|It−1; θ) of Rt and st in terms of st. The

log-likelihood function becomes as follows:

ln L (θ) =
T∑

t=1

ln

{
1∑

st=0

f (Rt|st, It−1; θ) f (st|It−1; θ)

}
. (6.1)

If the error term zt follows a normal distribution, the right-hand side { · } of Equation (6.1)

becomes as below,

1∑
st=0

f (Rt|st, It−1; θ) f (st|It−1; θ) =
1√

2πσ2
0t

exp

(
(Rt − r)2

2σ2
0t

)
× Pr [st = 0|It−1]

+
1√

2πσ2
1t

exp

(
(Rt − r)2

2σ2
1t

)
× Pr [st = 1|It−1] , (6.2)

where the volatilities σ2
0t and σ2

1t are as follows:

σ2
0t = ω0 + α0ε

2
t−1 + β0E

[
σ2

t−1|It−2

]
,

σ2
1t = ω1 + α1ε

2
t−1 + β1E

[
σ2

t−1|It−2

]
.

Pr [st = 0|It−1] and Pr [st = 1|It−1] represents the probabilities of st when the information

It−1 until the time t − 1 is provided. If the error term zt follows the t-distribution, the
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right-hand side { · } becomes as follows:

1∑
st=0

f (Rt|st, It−1; θ) f (st|It−1; θ)

=
Γ((ν + 1)/2)

π
1
2 Γ(ν/2)

(
1 +

(Rt − r)2

σ2
0t(ν − 2)

)− ν+1
2 (

σ2
0t

)− 1
2 (ν − 2)−

1
2 × Pr [st = 0|It−1]

+
Γ((ν + 1)/2)

π
1
2 Γ(ν/2)

(
1 +

(Rt − r)2

σ2
1t(ν − 2)

)− ν+1
2 (

σ2
1t

)− 1
2 (ν − 2)−

1
2 × Pr [st = 1|It−1] . (6.3)

Pr [st = 0|It−1] and Pr [st = 1|It−1] in Equations (6.2) and (6.3) are obtained with the filtering

method proposed by Hamilton (1989) (Hamilton Filter). In the following equations, i = 0, 1,

j = 0, 1 represent the states at the time t − 1 and at the time t, respectively. In order to

obtain the probability of st = j when the information It until the time t is provided, that

is, Pr [st = j|It], Pr [st−1 = i|It−1] is first calculated from Pr [st = j|It−1] with the following

equation:

Pr [st = j|It−1] =
1∑

i=0

Pr [st = j, st−1 = i|It−1]

=
1∑

i=0

Pr [st = j|st−1 = i] Pr [st−1 = i|It−1] , (6.4)

where Pr [st = j|st−1 = i] is the transition probability calculated in Equation (2.8). Next,

when the data Rt at the time t is added, the following equation is obtained:

Pr [st = j|It] = Pr [st = j|It−1, Rt] =
f (st = j,Rt|It−1)

f (Rt|It−1)

=
f (Rt|st = j, It−1) Pr [st = j|It−1]∑1

j=0 f (Rt|st = j, It−1) Pr [st = j|It−1]
. (6.5)

With this equation, Pr [st = j|It] is calculated, where It = (It−1, Rt). By repeating the

calculations of Equations (6.4) and (6.5), Pr [st = j|It−1] is obtained for t = 1, 2, . . . , T , and

the results are substituted into Equation (6.2) or (6.3). As Pr [s0 = i|I0] which is necessary

for the calculation of the time t = 1, the following steady-state probability is used in general:

π0 = Pr [s0 = 0|I0] =
1 − p

2 − p − q
,

π1 = Pr [s0 = 1|I0] =
1 − q

2 − p − q
.

6.2 Variance Reduction Techniques

This study proposed the use of the two variance reduction techniques: antithetic variates

and control variates, in order to reduce the variance of the estimated values of the Monte
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Carlo simulation and conduct more precise estimation 15) .

The antithetic variates is a method of producing two sequences that are negatively

correlated with each other when random numbers are generated and calculating the av-

erage values of them to decrease the error in sampling. In the model of this paper, when{
z
(i)
T+1, z

(i)
T+2, . . . , z

(i)
T+τ

}n

i=1
is sampled from the standard normal distribution at Step [2], mi-

nus is added to it to obtain
{
−z

(i)
T+1,−z

(i)
T+2, . . . ,−z

(i)
T+τ

}n

i=1
and add it to random numbers.

At Step [3],
{

u
(i)
T+1, u

(i)
T+2, . . . , u

(i)
T+τ

}n

i=1
is sampled from the standard uniform distribution,

in the same way, and then the value subtracting the uniform random number from one:{
1 − u

(i)
T+1, 1 − u

(i)
T+2, . . . , 1 − u

(i)
T+τ

}n

i=1
is added. Therefore, the number of times of the

Monte Carlo simulation after Step [4] is 2n. There emerges a negative correlation between

the underlying asset prices at maturity calculated using the above two kinds of random num-

ber sequences―
{
S

(i)
T+τ

}n

i=1
and

{
S

(i)
T+τ

}2n

i=n+1
, and so it is possible to reduce the variance of

the option prices.

The control variates, the other variance reduction technique, is the method of defining

the analytically-calculable variables as control variables and reducing variance by using the

analytically calculated control variables and the values obtained through the Monte Carlo

simulation. As the control variable of the control variates, the option price of the B-S model is

used. In the B-S model, it is assumed that the underlying asset price S follows the geometric

Brownian motion.

dS = µSdt + σSdW.

where µ is the expected return rate, dt is the infinitesimal time interval, σ is the standard

deviation, and dW is the infinitesimal increase in the standard Wiener process. At this time,

the natural logarithm of the underlying asset price lnS is expressed by the following equation

based on the Ito’s formula:

d ln S =
(

µ − 1
2
σ2

)
dt + σdW.

ln S follows the arithmetic Brownian motion. Here, when ST represents the underlying asset

price at the time T , which is the time for evaluating the option price, and ST+τ depicts

the underlying asset price at the time T + τ , the difference between each natural logarithm

ln ST+τ − ln ST follows the following normal distribution:

ln ST+τ − ln ST ∼ N

((
µ − 1

2
σ2

)
τ, σ2τ

)
.

15)In addition to these techniques, a variety of techniques has been proposed, including the stratified sam-
pling, the Latin hypercube sampling, and the importance sampling. With regard to the option evaluation
based on numerical calculation, refer to Broadie and Glasserman (1996), Boyle, Broadie and Glasserman
(1997), Ross (2002, Chapter 8), Jäckel (2002), Seydel (2002, Chapter 3), and Tavella (2002, Chapter 5, 6),
etc.
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In this paper, the risk neutrality of investors is assumed, and so µ becomes equal to the

risk-free assets’ continuously-compounded interest rate r∗. Therefore, the underlying asset

price return rate Rt = ln St − ln St−1 at the time t can be formulated as follows:

Rt = r∗ − 1
2
σ2 + εt, (6.6)

εt = σzt, zt ∼ i.i.d.N (0, 1) .

In addition, it is possible to rewrite lnST+τ − ln ST as follows:

ln ST+τ − ln ST

= (lnST+τ − ln ST+τ−1) + (lnST+τ−1 − ln ST+τ−2) + · · · + (lnST+1 − ln ST )

= RT+τ + RT+τ−1 + · · · + RT+1. (6.7)

Then, the underlying asset price at maturity S
(i)
T+τ , which is obtained through the i-th pass,

can be expressed by the following equation:

S
(i)
T+τ = ST exp

(
R

(i)
T+τ + R

(i)
T+τ−1 + · · · + R

(i)
T+1

)
= ST exp

{(
r∗ − 1

2
σ2 + ε

(i)
T+τ

)
+
(

r∗ − 1
2
σ2 + ε

(i)
T+τ−1

)
+ · · · +

(
r∗ − 1

2
σ2 + ε

(i)
T+1

)}

= ST exp

(
r∗τ − 1

2
σ2τ + σ

T+τ∑
t=T+1

z
(i)
t

)
, i = 1, 2, . . . , n. (6.8)

Therefore, this equation is used for obtaining the underlying asset price at maturity with the

Monte Carlo simulation based on the B-S model. In general, Historical Volatility (HV) is

used for the standard deviation σ. Historical Volatility means the volatility calculated from

past stock data. In this study, the standard deviation of the underlying asset price change

rate in the past 20 days is used, and HV is calculated as follows:

σHV =

√√√√ 1
20 − 1

20∑
t=1

(Rt − R̄)2. (6.9)

where R̄ is the mean of Rt in 20 days.

When S
(i)
MS−GARCH represents the underlying asset price at the maturity T + τ , which

is calculated through the Monte Carlo simulation based on the MS-GARCH model, S
(i)
BS

represents the underlying asset price at maturity, which is calculated through the Monte

Carlo simulation based on the B-S model, C̃MS−GARCH，C̃BS and CBS represent the call

option prices at the time T in respective models, and CBS depicts the analytic solution in
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the B-S model 16) , the call option price can be calculated as follows:

CT = C̃MS−GARCH − ϕ
(
C̃BS − CBS

)
. (6.10)

The expectations of both sides of the above equation are calculated as follows:

E [CT ] = E
[
C̃MS−GARCH − ϕ

(
C̃BS − CBS

)]
= E

[
C̃MS−GARCH

]
− ϕ (CBS − CBS)

= E
[
C̃MS−GARCH

]
.

It is obvious that the expectation of CT in the left-hand side, which is obtained through

the Monte Carlo simulation, is equal to the expectation of C̃MS−GARCH , which is calculated

through the Monte Carlo simulation based on the MS-GARCH model. In addition, using

Equation (6.10), the variance of CT is expressed by the following equation:

V ar (CT ) = V ar
(
C̃MS−GARCH

)
+ ϕ2V ar

(
C̃BS

)
− 2ϕCov

(
C̃MS−GARCH , C̃BS

)
.

ϕ is obtained by partially differentiating the above equation in terms of ϕ, which minimizes

the variance.

ϕ =
Cov

(
C̃MS−GARCH , C̃BS

)
V ar

(
C̃BS

) . (6.11)

The calculation for the put option is conducted in the same way.

If the error term of the MS-GARCH model follows the t-distribution as expressed in

Equation (2.10),
{
z
(i)
T+1, z

(i)
T+2, . . . , z

(i)
T+τ

}n

i=1
is sampled from the t-distribution with a degree

of freedom of ν and a variance of 1, not the standard normal distribution, at Step [2]. To

conduct this sampling, x
(i)
t and w

(i)
t are first sampled from the standard normal distribution

and the χ2 distribution with a degree of freedom of ν, which are independent of each other,

and then the following calculation is carried out.

z
(i)
t =

√
ν − 2x

(i)
t√

w
(i)
t

.

In this case, when the option price of the B-S model is obtained through the Monte Carlo

simulation by means of the control variates, the calculation is conducted using x
(i)
t instead

of z
(i)
t in Equation (6.8).

16)The Historical Volatility of Equation (6.9) is also used for the volatility σ of the B-S model, so that it
becomes consistent with the B-S solution based on simulation. Here, since the B-S model needs the annualized
volatility, the number of trading days in a year is 250, and so the volatility σ of the B-S model is multiplied
by

√
250 .
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