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abstract

In this paper, Nikkei 225 Options are evaluated with the MS-EGARCH
model, which is developed by combining the Markov switching model and the
EGARCH model, and the effectiveness of the MS-EGARCH model in the op-
tion market is discussed. As a result of the empirical analysis, it is found that
the bull and bear of the Nikkei 225 index, which is an underlying asset, cannot
be captured with any models except the MS-EGARCH model, which assumes
that the error term follows the t distribution. As for call option, whose pe-
riod before expiration is long, it is found that the performance of this model is
the best. In the case where volatility was increasing just after Lehman’s fall,
the performance of the conventional GARCH and BS models is quite poor,
while the option evaluation with the MS-EGARCH and EGARCH models is
extremely excellent. In addition, it is revealed that the evaluation of option
prices is significantly influenced by the formulation considering the asymmetric
relation between rates of return of underlying asset prices and volatility and
the assumption that the distribution of the error term, expected rate of return,
and volatility follow the Markov switching process.

1 Introduction

The volatility of expected rates of return plays an important role in option pricing theory

and is a highly sensitive parameter for option price. The main assumptions when deriving

the Black and Scholes (1973) option pricing model (hereinafter called “BS model”) are that

the expected rate of return is lognormally distributed and that volatility is constant over

time. However, it is known as empirical fact that the volatility of expected rates of return

∗This research was supported by the Zengin Foundation for Studies on Economics and Finance (2010).
The data of Nikkei 225 Options used in this study was kindly provided by Osaka Securities Exchange. All
remaining errors are our responsibility.

†Faculty of Business Administration, Toyo University, E-mail: satoyoshi@toyo.jp
‡College of Economics, Nihon University, E-mail: mitsui.hidetoshi@nihon-u.ac.jp
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fluctuate over time, and thus formulation and analysis of a model for fluctuating volatility is

necessary. How to formulate volatility fluctuations and evaluate option pricing in such cases

is an extremely important issue.

In order to understand the volatility variation clearly, Engle (1982) proposed the Autore-

gressive Conditional Heteroskedasticity (ARCH) model that formulates the volatility at each

time as the linear function of the square of the past unexpected shock. In addition, Boller-

slev (1986) added the past volatility values to the explanatory variables, and extended the

GARCH (Generalized ARCH) model to a more general model. Empirical studies of options

with such ARCH type models have been conducted by Engle and Mustafa (1992), Noh, Engle

and Kane (1994), Saez (1997), Sabbatini and Linton (1998), Bauwens and Lubrano (1998),

and Moriyasu (1999) 1) . In addition, empirical studies utilizing the GARCH model based

on local risk neutrality, which was proposed by Duan (1995), have been conducted by Mitsui

(2000), Duan and Zhang (2001), Bauwens and Lubrano (2002), Mitsui and Watanabe (2003),

Watanabe (2003), Takeuchi and Watanabe (2008), and Watanabe and Ubukata (2009).

Incidentally, it is known that in the volatility variation model, including the ARCH model,

the persistency of shock on volatility is extremely high. However, as Diabold (1986) and

Lamoureux and Lastrapes (1990) pointed out, such persistency is considered to be caused by

the structural change of volatility. Based on this fact, Hamilton and Susmel (1994) and Cai

(1994) proposed the Morkov Switching ARCH (MS-ARCH) model by using a state variable

that follows the Markov process in the formulation of the ARCH model, in order to take

into account the structural change. Moreover, Gray (1996) proposed the Markov Switching

GARCH (MS-GARCH) model by taking into account the structural change in the GARCH

model, not the ARCH model 2) ．The MSGARCH model was later modified by Klaassen

(2002) and Haas et al. (2004).

Satoyoshi (2004) conducted an empirical analysis of TOPIX (Tokyo Stock Price Index)

with the MS-GARCH model, and found that the rate of TOPIX change underwent switching

and that this model is superior to the conventional GARCH model in forecasting volatility

of daily data．On the basis of this result，Satoyoshi and Mitsui (2011) investigated the

pricing of Nikkei 225 Options using the MS-GARCH model proposed by Gray (1996), and

revealed that, for call options, the MS-GARCH model with Student’s t-distribution gives

1)In these studies, the risk neutrality of investors was assumed, and so risk premium was not taken into
account. Therefore, risk assets are evaluated based on only the expectation of the asset return, and the
expected return rate of risky assets becomes equal to that of risk-free assets.

2)Gray (1996) named this model the regime-switching GARCH model. However, regime switching is induced
by Markov chain. In this study, it is called the Markov switching GARCH model.

2



more accurate pricing results than GARCH models and the Black-Scholes model. The MS-

GARCH model was developed by combining the Markov switching model and the GARCH

model, and can describe sufficiently the characteristics of the thickness of the tail for the

distribution of the rate of returns. Accordingly, it can be considered that the performance

of option valuation was improved.

Here, the strain of the distribution was not considered at all, because the equation of

rate of return was formulated with expected rate of return being a constant. Observing

long-term data for the Nikkei 225 index, we can see that there are periods of upward trends

(bulls) and periods of downwards trends (bears). By modeling these bull and bear periods

through switching of expected rates of return, we can express the asymmetric distortions

of rate of return distributions. Also, since the so-called asymmetry of volatility, whereby

volatility is greater on days following falls in stock prices than on days following rises, has

long been observed in the Nikkei 225 Index, it is possible that the EGARCH (Exponential

GARCH) model, which inputs such variability characteristics, may be even better than the

GARCH model when it comes to option valuation. Furthermore, when one considers that the

asymmetry of volatility has been observed, it is possible that the Markov-Switching EGARCH

(MS-EGARCH) model, which combines the EGARCH model with switching, may perform

highly in option valuation.This study shall evaluate Nikkei 225 Options pricing, using an

EGARCH model in which not only volatility in underlying asset, but also expected rates

of return, induce Markov-switching - which is to say, an MS-EGARCH model - and shall

be guessed the model performs highly as compared with other models. This MS-EGARCH

model is based on the MS-GARCH model used by Haas et al. (2004) 3)

The MS-GARCH model is expanded into the MS-EGARCH model, and the number of

state variables following the Markov chain is also increased from one to two. With only one

state variable, even if switching in expected rates of return is assumed, there is a constraint

that it must occur at the same time as switching in volatility. Since switching in expected

rates of return does not always occur at the same time as switching in volatility, it was

decided to have two state variables, and a model that allowed for switching in expected rates

of return and volatility to occur separately. Where investors are assumed to be risk-neutral,

European option prices like the Nikkei 225 Options can easily be derived through Monte

Carlo simulations. The call (put) option prices can be evaluated by averaging the present

discount values of the maximum between the simulated price minus the exercise price and

3)Henry (2009) presents an MS-EGARCH model that expands upon the MS-GARCH model of Gray (1996),
to analyze data from the British securities market.
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zero (between the exercise price minus the simulated price and zero). We propose as a means

of accelerating convergence in the simulation, two variance reduction methods: negative

correlation and a control variate approach.

As a result of the empirical analysis, it was found that the bull and bear of the Nikkei

225 Index, which is an underlying asset, cannot be grasped with any models except the MS-

EGARCH model, which is an underlying asset, cannot be captured with any models except

the MS-EGARCH model, which assumes that the error term follows the t distribution. As

for call option, whose period before expiration is long, it was found that the performance

of this model is the best. In the case where volatility was increasing just after Lehman’s

fall, the performance of the conventional GARCH and BS models was quite poor, while the

option evaluation with the MS-EGARCH and EGARCH models was extremely excellent. In

addition, it was revealed that the evaluation of option prices is significantly influenced by the

formulation considering the asymmetric relation between rates of return of underlying asset

prices and volatility and the assumption that the distribution of the error term, expected

rate of return, and volatility follow the Markov switching process.

The brief descriptions of the following sections are as follows: Section 2 describes the

MS-EGARCH model and risk neutrality are assumed, and mentions a model for comparison

in this study. Section 3 explains the method for evaluating European options using the Monte

Carlo simulation. The results of the empirical analysis are summarized in Section 4. Section

5 contains conclusions and future study themes.

2 Analytical Model

2.1 MS-EGARCH Model

Let Rt describe the rate of return for underlying asset prices, the MS-EGARCH model can

be represented as follows:

Rt = μa +
√

Vab,tzt, (2.1)

zt ∼ i.i.d.,E [zt] = 0, V [zt] = 1, (2.2)

ln (Vab,t) = ωb + β ln (Vab,t−1) + θ

[
Rt−1 − μa√

Vab,t−1

]
+ γ

[∣∣∣∣∣Rt−1 − μa√
Vab,t−1

∣∣∣∣∣− E [|zt−1|]
]

, (2.3)

μa = μ1Δ1t + μ2Δ2t, μ1 < μ2, (2.4)

ωb = ω1Γ1t + ω2Γ2t, ω1 < ω2. (2.5)
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Here, with equation (2.4), the variables (Δ1t,Δ2t) are such that where Δt = 1 (Δ1t = 1,Δ2t =

0) and where Δt = 2 (Δ1t = 0,Δ2t = 1). Similarly, with equation (2.5), the variables

(Γ1t,Γ2t) are such that where Γt = 1 (Γ1t = 1,Γ2t = 0) and when Γt = 2 (Γ1t = 0,Γ2t = 1).

Δt and Γt are state variables that jointly follow single Markov chains, and each take the values

of 1 or 2. Volatility Vab,t is the conditional variance for Rt, Vab,t = V [Rt|Δt = a,Γt = b, It−1]

with the two state variables Δt and Γt, assuming the information set It−1 = {Rt−1, Rt−2, · · · }
until the time of t − 1. The combinations of state variables at time t are: (Δt = 1,Γt = 1),

(Δt = 1,Γt = 2), (Δt = 2,Γt = 1), and (Δt = 2,Γt = 2), and therefore the four combinations

of expected rate of return and volatility are: low return, low volatility (μ1, ω1); low return,

high volatility (μ1, ω2); high return, low volatility (μ2, ω1); and high return, high volatility

(μ2, ω2). When there is one state variable, expected rate or return and volatility both switch

simultaneously, but by introducing two state variables, Δt and Γt, the model allows for

switching to be induced by expected rate of return and volatility at separate times. Also, if

the expected rate of return is such that μ1 < 0, μ2 > 0, we can call the low-return phase

“bear”, and the high-return phase “bull”. The transition probabilities can be expressed by

the following equations:

Pr[Δt = j|Δt−1 = i] = pij, i, j = 1, 2,

Pr[Γt = l|Γt−1 = k] = qkl, k, l = 1, 2,

2∑
j=1

pij =
2∑

l=1

qkl = 1,

where

P =
(

p11 p21

p12 p22

)
, Q =

(
q11 q21

q12 q22

)
.

When estimating a volatility fluctuation model, the distribution of the error term zt is often

assumed to follow a standard normal distribution. The distribution for the rate of return of

asset prices has been understood to follow a distribution with a thicker tail than a normal

distribution, but even if the error term were to follow a normal distribution, if volatility

fluctuates, then the kurtosis of the rate of return would exceed 3. However, the height of the

kurtosis for the rate of return cannot always be explained by fluctuations in volatility alone,

and in fact, in many previous studies, they have come to the conclusion that distribution

with higher kurtosis fit error term distribution better than normal distribution do. Therefore,

both normal distribution and t distribution will be considered for error term distribution. If
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the error term follows the normal distribution, zt in equation (2.2) becomes as follows:

zt ∼ i.i.d.N (0, 1) . (2.6)

If the error term follows the t-distribution, zt becomes as follows:

zt ∼ i.i.d.t (0, 1, ν) . (2.7)

Here, ν represents degree of freedom, and the variance of zt has been standardized to be one.

In what follows, MS-EGARCH models in which error terms follow normal distributions shall

be called MSEG-n models, while those in which error terms follow t distributions shall be

called MSEG-t models.

In this study, in order to allow for maximum likelihood estimation in models, an idea

on volatility formulation put forth by Haas et al. (2004) was employed. When state vari-

ables that follow Markov chains are directly introduced into GARCH and EGARCH models,

parameters cannot be estimated through maximum likelihood methods. This is because

volatility at time t is dependent on all state variables until time t, and therefore when state

variables are assumed to take one of two states, one must consider 2t combinations of state

variables, making programming extremely difficult. Therefore, as with equation (2.3), when

volatility at time t is Vab,t, volatility at time t − 1 is treated as Vab,t−1. That is to say, when

switching has occurred at time t−1, regardless of whether the state at time t−1 differs from

that at time t, volatility is considered where the same state prevails at time t − 1 as at time

t, and volatility at time t is then determined according to this. For example, suppose that

at time t − 1 there is low return and low volatility; that is, the state variables are Vab,t−1.

If switching occurs at time t, and we have high return μ2 and high volatility ω2, then the

state variables will change to (Δt = 2,Γt = 2). At this time, according to the equation (2.3),

volatility will be

ln (V22,t) = ω2 + β ln (V22,t−1) + θ

[
Rt−1 − μ2√

V22,t−1

]
+ γ

[∣∣∣∣∣Rt−1 − μ2√
V22,t−1

∣∣∣∣∣− E [|zt−1|]
]

.

Looking at this formula, we see that volatility at time t is V22,t, the constant term is ω2,

and that volatility and expected rate of return are V22,t−1 and μ2, respectively. That is to

say, even though we have (Δt−1 = 1,Γt−1 = 1) at time t − 1, it is almost as though it is

the same state as at time t, (Δt−1 = 2,Γt−1 = 2). This means that we do not have to

consider innumerous combinations of state variables, and can estimate parameters through

the maximum likelihood method.
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Figure 1: Only volatility follows Markov-switching processes

Figure 2: Both expected rates of return and volatility follow Markov-switching processes

In Satoyoshi and Mitsui (2011), expected rates of return for underlying asset prices are

assumed to be constants, and option valuation is performed with an MS-GARCH model. In

this study, this assumption is relaxed, and expected rates of return are allowed to switch

at the same time as volatility. By including fluctuations in expected rates of return for

underlying asset prices in this way, we are able to perceive not only the thickness of tails for

expected rates of return distribution, but also distortion in distributions. As a result, option

valuation performance can be expected to improve. Figures 1 and 2 show distortions arising

in distributions through switching in expected rates of return. The heavy line in Figure 1

is a mixture normal distribution (same as weighted-value) graph drawn from two normal

distributions, N(0, 1) and N(−1, 9), and a graph of a normal distribution, N(−0.5,5.25)

with the same mean and variance as the mixture normal distribution. We can see that unlike
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in the case of Figure 1, by choosing values that differ from the mean, we can express not

only the thickness of the tail of the mixture normal distribution, but also distortions in the

distribution.

2.2 Risk Neutrality of Investors and Formulation of Return

In this study, we define the simple return 4)

Rt =
St − St−1

St−1
, (2.8)

where St is the underlying asset price at time t. This paper assumes that investors are risk-

neutral. Under this assumption, the conditional expected rate of return given It−1 is equal

to the simple risk-free interest rate r:

E [Rt |It−1 ] = r.

From equation (2.8),

E

[
St − St−1

St−1
|It−1

]
= r,

therefore, E [St |It−1 ] is given by

E [St |It−1 ] = St−1(1 + r).

This equation means that the underlying asset price grows on average at the risk-free interest

rate and investors require no compensation for risk.

In this study, option prices are evaluated, under the assumption that the rate of return

of risk-free assets fluctuates in parallel with the expected rate of return of underlying asset

prices. Namely, it is assumed that the interest rate of risk-free assets fluctuates according to

the state variable Δt, so that rt = μ1 when the expected rate of return of underlying assets

at tiem t is μ1 and rt+1 = μ2 when it becomes μ2 through the switching of the expected rate

of return at time t + 1. With this assumption, it is possible to easily estimate the discounted

option price as of maturity.

2.3 Model for Comparison

This study analyzed the following volatility variation models, as well as the MS-EGARCH

model mentined in Section 2.1.
4)In the theory of financial engineering, including options, it is generally assumed that Rt = ln St − ln St−1,

based on continuous compounding. However, in the model adopted for this study, option valuation cannot be
conducted if rate of return is defined like this. For details, refer to Satoyoshi and Mitsui (2011).
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(1) MS-EGARCH-c model (expected rate of return is constant)

Rt = μ +
√

Vb,tzt,

ln (Vb,t) = ωb + β ln (Vb,t−1) + θ

[
Rt−1 − μ√

Vb,t−1

]
+ γ

[∣∣∣∣∣Rt−1 − μ√
Vb,t−1

∣∣∣∣∣− E [|zt−1|]
]

,

ωb = ω1Γ1t + ω2Γ2t, ω1 < ω2.

where when Γt = 1, it becomes (Γ1t = 1,Γ2t = 0), and when Γt = 2, it becomes (Γ1t =

0,Γ2t = 1) like the MS-EGARCH model. Γt is a state variable that follows the Markov

chain, and equal to 1 or 2. “MSEG-c-n” implies that the error term follows the normal

distribution, and “MSEG-c-t” means that the error term follows the t-distribution.

(2) MS-GARCH model

Rt = μa +
√

Vab,tzt,

Vab,t = ωb + α(Rt−1 − μa)2 + βVab,t−1,

μa = μ1Δ1t + μ2Δ2t, μ1 < μ2,

ωb = ω1Γ1t + ω2Γ2t, ω1 < ω2

where it is assumed that the switching of expected rate of return does not depend on

the switching of volatility like the MS-EGARCH model. “MSG-n” implies that the error

term follows the normal distribution, and “MSG-t” means that the error term follows the

t-distribution.

(3) MS-GARCH-c model (expected rate of return is constant)

Rt = μ +
√

Vb,tzt,

Vb,t = ωb + α(Rt−1 − μ)2 + βVb,t−1,

ωb = ω1Γ1t + ω2Γ2t, ω1 < ω2

“MSG-c-n” implies that the error term follows the normal distribution, and “MSG-c-t” means

that the error term follows the t-distribution.

In this study, normal GARCH models, normal EGARCH models, and BS model 5) are

applied for the pricing of options, and these models are compared. “-n” implies that the

error term follows the normal distribution, and “-t” means that the error term follows the

t-distribution.

5)The European call option price CBS
T and the European put option price P BS

T at time T with an exercise
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3 Method for pricing European options using Monte Carlo

simulation

3.1 Option prices under the assumption of risk neutrality

The following is a brief explanation of the method for obtaining the option prices by means of

the Monte Carlo simulation. When investors are risk neutral, the price of a European Option

becomes the present discounted value that is calculated by discounting the expectation of

the option price at the maturity with the interest rate of risk-free assets r. Namely, when

it is assumed that the T + τ is maturity and that CT is the price of the call option of the

exercise price K at time T and that PT is the put option price, the following expressions are

obtained:

CT = (1 + r)−τE [Max (ST+τ − K, 0)] , (3.1)

PT = (1 + r)−τE [Max (K − ST+τ , 0)] . (3.2)

Here, ST+τ represents the underlying asset price at the maturity of the option. In this study,

it is assumed that the interest rate of risk-free assets r fluctuates in parallel with the expected

rate of return of underlying assets μa. Therefore, the interest rate from T to T + τ , which is

maturity, becomes μ1 and μ2 according to state variable Γt.

In the case of the MS-EGARCH model, since there is no closed form analytical solution

for equation (3.1) and (3.2), these expectations are estimated using Monte Carlo simulation.

Let
{
S

(i)
T+τ

}n

i=1
be the simulated values of ST+τ and n be the number of sample paths. When

n is sufficiently large, by the law of large numbers, these expectations can be approximated

price of K and a current maturity of τ can be obtained with the following BS model.

CBS
T = ST N(d1) − Ke−r∗τN(d2), (2.9)

P BS
T = −ST N(−d1) + Ke−r∗τN(−d2), (2.10)

d1 =
ln (ST /K) + (r∗ + σ2/2)τ

σ
√

τ
,

d2 = d1 − σ
√

τ ,

N(di) =

� di

−∞

1√
2π

exp

�
−x2

2

�
dx, i = 1, 2.

where, r∗ is the continuously compounded risk-free interest rate and N(·) represents the distribution function
of the standard normal distribution.
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by the following equations:

E [Max (ST+τ − K, 0)] ≈ 1
n

n∑
i=1

Max
(
S

(i)
T+τ − K, 0

)
, (3.3)

E [Max (K − ST+τ , 0)] ≈ 1
n

n∑
i=1

Max
(
K − S

(i)
T+τ , 0

)
. (3.4)

3.2 Procedures of the Monte Carlo Simulation

The procedures for calculating an option price with the Monte Carlo simulation in this study’s

model are as follows, where it is assumed that the error term of the MSEG-n model follows

the normal distribution.

1. Estimate the unknown parameters of the MSEG-n model with the maximum likelihood

method, using the samples {R1, R2, . . . , RT }.

2. Sample
{
z
(i)
T+1, z

(i)
T+2, . . . , z

(i)
T+τ

}n

i=1
from independent standard normal distributions.

3. Sample
{
u

(i)
1,T+1, u

(i)
1,T+2, . . . , u

(i)
1,T+τ

}n

i=1
and

{
u

(i)
2,T+1, u

(i)
2,T+2, . . . , u

(i)
2,T+τ

}n

i=1
from in-

dependent standard rectangular distributions.

4. Obtain the state variables
{

Δ(i)
T+1,Δ

(i)
T+2, . . . ,Δ(i)

T+τ

}n

i=1
，
{

Γ(i)
T+1,Γ

(i)
T+2, . . . ,Γ(i)

T+τ

}n

i=1

following the Markov process using uniform random numbers obtained at Step 3. and

the transition probabilities P and Q estimated with the maximum likelihood method.

5. Calculate
{
R

(i)
T+1, R

(i)
T+2, . . . , R

(i)
T+τ

}n

i=1
by substituting the values at Steps 2. and 4.

into the MS-EGARCH model.

6. Obtain the underlying asset price
(
S

(1)
T+τ , S

(2)
T+τ , . . . , S

(n)
T+τ

)
at the maturity time T + τ

of the option with the following equation:

S
(i)
T+τ = ST

τ∏
s=1

(
1 + R

(i)
T+s

)
, i = 1, 2, . . . , n. (3.5)

7. Calculate the call option’s price CT and the put option’s price PT with the following

equation:

CT ≈ (1 + r)−τ 1
n

n∑
i=1

Max
(
S

(i)
T+τ − K, 0

)
, (3.6)

PT ≈ (1 + r)−τ 1
n

n∑
i=1

Max
(
K − S

(i)
T+τ , 0

)
. (3.7)
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RT
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· · ·

S
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T+τ

T + τ（Expiration）

�� ��
Period of estimation Period of simulation

Figure 3: Period of estimation and simulation

Figure 3 shows the estimated period of model parameters and the simulation period．It is

considered that the sufficient number of times of the Monte Carlo simulation is about 10,000.

In order to reduce the variances of CT and PT , we propose the method of concurrently using

the control variates and the antithetic variates, which are representative variance reduction

techniques. In the case of the MSEG-t model, we can use Monte Carlo simulation in the

same procedures.

Incidentally, at Step 4., the state variables that follow the Markov process are obtained

using uniform random numbers and transition probabilities, but this method cannot be

applied for the state variable ΔT+1，ΓT+1 at time T + 1, the starting point. This is because

even after the maximum likelihood method at Step 1., the value of the state variable ΔT，

ΓT at time T remains unknown, and it is impossible to calculate the state variable ΔT+1，

ΓT+1 from uniform random numbers and transition probabilities. Accordingly, with regard to

ΔT+1, the following calculation is conducted utilizing the probability Pr [ΔT = i|IT ] and the

transition probability Pr [ΔT+1 = j|ΔT = i] by means of the filtering technique of Hamilton

(1989) (Hamilton Filter).

Pr [ΔT+1 = j|IT ] =
2∑

i=1

Pr [ΔT+1 = j|ΔT = i] Pr [ΔT = i|IT ]

From this probability, sampling is carried out6) ．We can obtain ΓT+1 in the same sampling．

4 Empirical results for Nikkei 225 Options

4.1 Data

The options used in empirical analysis for this study were Nikkei 225 call options and put

options with contract months from June 2007 to January 2010 (32 contract months). Using

a base of business days, closing prices were analyzed at 20 (τ = 20) and 30 (τ = 30) days

6)For details on Hamilton Filter, refer to Hamilton (1989)，Kim and Nelson (1999).
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before the option’s maturity 7) . When τ = 20, the number of samples for call and put options

were 524 and 584, respectively, and when τ = 30, the numbers were 495 and 539. Also, as a

basic assumption, there were no transaction costs, tax charges or dividends, and no margins

were required for options. For the interest-rate data for risk-free assets that was needed

in calculations for the BS model, overnight unsecured call money was used. As parameter

estimates for volatility fluctuation models in the MS-EGARCH-n and other models, closing

prices for the Nikkei 225 Index at 20 or 30 days prior to maturity, as well as at 3,500 days

prior to these dates, were used 8) . For example, where the closing price is taken 20 days prior

to maturity, and the first contract month is June 2007, the option valuation date would be

May 11, 2007, and 3,500 days prior to this would be February 25, 1993. By calculating the

daily rate of return using the equation (2.8), the sample period would be from February 28,

1993 to May 11, 2007 (the size of the sample, T = 3,500), and the model’s parameters would

be estimated using the daily rate of return for this period. Given these estimated parameters,

the option pricing would then be obtained through Monte Carlo simulation. Calculations

would be performed in the same way from the next contract month onward. Where the

closing price is taken 30 days prior to maturity, 3,500 days prior to the valuation date for the

first contract month (June 2007) would be February 10, 1993, and data for the daily rate of

return for this date would be used.

4.2 Estimation results for the MS-EGARCH Models

Table 1 shows estimated results for an MS-EGARCH-t model. The sample period for daily

rates of return is from February 10, 1993 until January 8, 2010, which is the maturity date

in the final contract month (January 2010). Estimated values for expected rate of return, μ1

and μ2 are −0.052 and 0.115, and are thus split into negative and positive values. From this,

when the state variable Δt is Δt = 1, the Nikkei 225 Index can be called a bear, and when

Δt = 2, it can be called a bull. Estimated values for the transition probability, p11 and p22, of

Δt are 0.996 and 0.992, respectively, and are hence both are extremely close to 1. Therefore,

we can see that if switching is induced in either the bull or the bear, the state would continue

for a long time. Conversely, estimated values, q11 and q22, for the transition probability of

the second state variable, Γt, are 0.989 and 0.923. Of the sustainability in volatility, these

parameters display sustainability in the part that can be explained by switching. Because

7)Although closing prices may be given at different times for Nikkei 225 Options and Nikkei 225 stock index,
this was not considered in this study.

8)For data on Nikkei 225 Index (Nikkei Stock Average), Nikkei NEEDS-Financial QUEST was used. For
parameter estimates, the programming language OxMetrics 5.00 (http://www.oxmetrics.net) was used.
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q11 > q22, it seems that if a switch is made to low volatility (Γt = 1), this state will continue

for a long time, but the state of high volatility (Γt = 2) will not continue for long. The

sustainability of volatility displayed in the EGARCH part of this model is β, and its estimated

value is 0.986. Also, the estimated value for the parameter θ, which shows asymmetry, is

−0.104, making it significant, and these results are the same as with the normal EGARCH

model.

Table 1: Estimation results for the MSEG-t model

p11 p22 q11 q22 μ1 μ2

Estimates 0.996 0.992 0.989 0.923 −0.052 0.115
Standard Errors 0.002 0.005 0.004 0.027 0.021 0.030

ω1 ω2 β θ γ ν

Estimates 0.001 0.038 0.986 −0.104 0.068 19.248
Standard Errors 0.003 0.009 0.003 0.012 0.016 7.276

Table 2: Log-likelihoods，AIC，SBIC

Log-likelihoods AIC SBIC
MSEG-n −7105.10 14232.19 14301.87
MSEG-t −7103.13 14230.26 14306.26
MSEG-c-n −7111.28 14238.57 14289.24
MSEG-c-t −7107.62 14233.24 14290.24
MSG-n −7156.12 14332.24 14395.58
MSG-t −7148.63 14319.25 14388.92
MSG-c-n −7159.27 14332.54 14376.87
MSG-c-t −7149.79 14315.58 14366.25
GARCH-n −7213.83 14435.65 14460.99
GARCH-t −7154.48 14318.97 14350.64
EGARCH-n −7163.89 14337.79 14369.46
EGARCH-t −7115.94 14243.89 14281.89

Figure 4 shows the probability of becoming a bull (Δt = 2). This probability is calculated

once all data has been provided. The issue of which periods should be treated as being bulls,

and which as being bears, is something that is not clearly defined. However, insofar as can

be seen from the graph, when this model is used, it seems that we can generally perceive

bulls and bears. Figure 5 is the probability of reaching high volatility (Γt = 2), and we know

that states of high volatility do not continue for long. Also, it is clear that switching periods
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differ for the bulls and bears in Figure 4, and in order to perceive bulls and bears, as well

as high volatility and low volatility, it seems that not one but two state variables following

Markov chains are required.
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Figure 4: Probability of bulls

Table 2 shows the log likelihoods, AIC and SBIC, of all models used in this study. In terms

of log likelihoods, the MS-EGARCH-t model, which assumed a t distribution for error terms,

was the highest, while the MS-EGARCH-n model, which assumed a normal distribution

for error terms, was the next highest. The MS-EGARCH-t model had the smallest AIC

values, while the MS-EGARCH-c-n model, which only allowed switching for volatility, had

the smallest SBIC values. From these results, it seems that the MS-EGARCH model, which

combines the EGARCH model and the Markov Switching model, is exceptional for perceiving

time-series fluctuations in Nikkei 225 Index. In order to determine whether the MS-EGARCH

and MSG models, which include Markov switching, capture fluctuations in real data better

than conventional GARCH and EGARCH models, we must perform tests that examine

whether switching is occurring. However, as is widely known, under the null hypothesis that

Markov switching does not exist, several of the model’s parameters cannot be distinguished,

and because test statistics do not follow normal asymptotic distributions, likelihood ratio

tests are problematic. Hansen (1992, 1996) and Garcia (1998) offer test methods that give

consideration to this problem, but because the aim of this study is option valuation, such tests
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will not be performed. Figure 6 shows changes in volatility for MS-EGARCH-n, EGARCH-n

and GARCH-n.
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Figure 5: Probability of high volatility

4.3 Comparison of Option prices

Using the estimated values of option prices in the 12 kinds of models mentioned in Section

2.3 and actual market prices, the mean error rate (MER) and the root mean squared error

rate (RMSER) are calculated, and each model is compared and discussed, as follows:

MER =
1
m

m∑
i=1

(
X̂estimated

i − Xmarket price
i

Xmarket price
i

)
, (4.1)

RMSER =

√√√√ 1
m

m∑
i=1

(
X̂estimated

i − Xmarket price
i

Xmarket price
i

)2

, X = C,P. (4.2)

Here, X̂estimated
i is the option price estimated through the Monte Carlo simulation, or the

theoretical price of the B-S model, and Xmarket price
i represents the market option price. m

is the number of samples.

Following Bakshi et al. (1997), we divide the option data into five different categories of

moneyness. These are shown in Table 3. (1) If S/K < 0.91, a call option is deep-out-of-the-

money (DOTM), and a put option is deep-in-the-money (DITM); (2) If 0.91 ≤ S/K < 0.97,
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Figure 6: Volatility

Table 3: Moneyness

Moneyness Call Option Put Option
S/K < 0.91 deep-out-of-the-money (DOTM) DITM

0.91 ≤ S/K < 0.97 out-of-the-money (OTM) ITM
0.97 ≤ S/K ≤ 1.03 at-the-money (ATM) ATM
1.03 < S/K ≤ 1.09 in-the-money (ITM) OTM

1.09 < S/K deep-in-the-money (DITM) DOTM

a call option is out-of-the-money (OTM), and a put option is in-the-money (ITM); (3) If

0.97 ≤ S/K ≤ 1.03, both a call option and a put option are at-the-money (ATM); (4) If

1.03 < S/K ≤ 1.09, a call option is ITM, and a put option is OTM; (5) If S/K > 1.09, a call

option is DITM, and a put option is DOTM.

4.3.1 Estimation Results for Call Options

Calculated MER and RMSER results for call options 20 days prior to maturity are contained

in Table 4. Firstly, looking at MER results, in Total the MSEG-n model value is −0.092, and

the downward and upward bias of its option valuation estimated values is the lowest among

all models. Next is the MSEG-tmodel, and we can see that these MSEG models are superior

to other models in terms of their MER standards. Also, the values obtained with the MSG,
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MSG-c, GARCH and BS models are extremely poor, and even without including switching,

the EGARCH model’s values are relatively good. According to RMSER standards, the rate

of divergence between estimated values and market prices is lowest when the EGARCH-n

model is used, followed by the EGARCH-t model. The MSEG and MSEG-c model’s values are

relatively good, but do not rival those of the normal EGARCH model. Also, even according

to these standards, values obtained with the MSG, MSG-c, GARCH and BS models are

extremely large. From the MER and RMSER results detailed above, we can see that for

valuations of call options 20 days prior to maturity, before considering switching we must at

least include an EGARCH model in formulas expressing fluctuations in volatility.

Table 5 shows results for 30 days prior to maturity. Looking at the MER results, in

Total the MS-EG-t model value is −0.116, and as with results for 20 days prior to maturity,

the downward and upward bias of its option valuation estimated values is the lowest among

all models, followed by the MSEG-n model, while the MSEG model is superior to other

models according to MER standards. For each moneyness, it can be considered that since

the values of DOTM and OTM for the MSEG model were small, the total value became

small.Also, values obtained with the MSG, MSG-c, GARCH and BS models are extremely

poor. According to RMSER standards, the rate of divergence between estimated values and

market prices is lowest when the MSEG-t model is used. Under either MER or RMSER,

the superiority of the MSEG-t model was indicated. This result differs from that 20 days

before expiration. The MSEG-t model is the only model that can capture bull and bear.

There is a possibility that there was the effect of the prediction of bull and bear, because the

period from expiration lengthened from 20 to 30 days. Accordingly, it is better to evaluate

call option, whose period before expiration is long, with a model that can capture bull and

bear.

4.3.2 Estimation Results for Put Options

Table 6 shows results for 20 days prior to maturity. Differing from the case of call option,

values are nearly equal, but compared with the total values, the MSEG-c-n model indicated

−0.384 for MER and 0.528 for RMSER, which are the smallest under respective standards.

30 days before the expiration shown in Table 7, MER was the smallest in the MSEG-t and

MSEG-c-t models, and RMSER was the smallest in the MSEG-c-t model. Like the case of

20 days before expiration, values do not vary significantly among models.

For 30 days before in the call option, the performance of the MSEG model including

bull and bear was the best. However, in the case of put option, values are slightly better
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in the MSEG-c model in which only volatility undergoes switching, regardless of the period

before expiration. Accordingly, it considered unnecessary to consider the bull and bear of

underlying asset prices in the evaluation of put option.

4.3.3 Estimation Results by Period

Tables 8 to 11 show MER and RMSER results sorted by year, for the period from 2007 to

2009. The results of call option in 2008 indicate that option evaluation is quite overpricing

in the MSG, MSG-c, GARCH, and BS models for both 20 and 30 days before expiration. On

the other hand, the values in the MSEG, MSEG-c, and EGARCH models in 2008 are nearly

equal to those in other years.

Figure 6 shows the variation in volatility in the EGARCH-t and GARCH-t models from

2007. Due to Lehman’s fall in Sep. 2008, volatility increased steeply, and the value of the

GARCH-t model is much larger than that of the EGARCH-t model. This is considered to

cause the difference in option evaluation. Namely, it can concluded that since the volatility

in the GARCH-t model was high, call option was overestimated in the MSG, MSG-c, and

GARCH models. Meanwhile, put option did not show the effect of the variation in volatility

due to Lehman’s fall.
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Table 4: Estimation results for call options（20 days prior to maturity）
MER

MSEG MSEG-c MSG
mn t n t n t

DOTM −0.098 −0.233 −0.316 −0.292 1.335 2.015 241
OTM −0.146 −0.041 −0.188 −0.194 0.319 0.342 74
ATM −0.115 −0.076 −0.132 −0.123 0.027 0.023 64
ITM −0.074 −0.040 −0.079 −0.072 −0.001 −0.008 48
DITM −0.032 −0.008 −0.030 −0.026 0.012 0.002 97
Total −0.092 −0.127 −0.201 −0.188 0.665 0.978 524

MSG-c GARCH EGARCH BS mn t n t n t
DOTM 1.361 1.522 3.079 3.209 −0.538 −0.457 2.378 241
OTM 0.402 0.383 0.408 0.386 −0.167 −0.165 0.111 74
ATM 0.045 0.043 0.069 0.053 −0.118 −0.116 −0.067 64
ITM 0.006 0.007 0.015 0.012 −0.079 −0.070 −0.055 48
DITM 0.009 0.010 0.016 0.015 −0.032 −0.026 −0.016 97
Total 0.690 0.762 1.487 1.541 −0.299 −0.259 1.093 524

RMSER

MSEG MSEG-c MSG
mn t n t n t

DOTM 1.021 0.804 0.797 0.906 2.544 3.985 241
OTM 0.304 0.351 0.309 0.318 0.709 0.724 74
ATM 0.164 0.241 0.172 0.169 0.155 0.148 64
ITM 0.105 0.145 0.108 0.104 0.090 0.089 48
DITM 0.060 0.095 0.060 0.058 0.055 0.053 97
Total 0.705 0.570 0.558 0.630 1.747 2.717 524

MSG-c GARCH EGARCH BS mn t n t n t
DOTM 2.541 2.988 8.255 7.495 0.758 0.776 7.164 241
OTM 0.812 0.759 0.741 0.743 0.303 0.300 0.655 74
ATM 0.165 0.155 0.184 0.164 0.169 0.165 0.250 64
ITM 0.091 0.090 0.095 0.092 0.114 0.107 0.119 48
DITM 0.054 0.054 0.057 0.056 0.064 0.060 0.059 97
Total 1.751 2.047 5.606 5.091 0.532 0.543 4.866 524
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Table 5: Estimation results for call options（30 days prior to maturity）
MER

MSEG MSEG-c MSG
mn t n t n t

DOTM −0.257 −0.289 −0.463 −0.338 1.524 2.193 260
OTM −0.110 −0.022 −0.167 −0.158 0.230 0.289 77
ATM −0.092 −0.073 −0.125 −0.117 0.018 0.047 66
ITM −0.039 −0.025 −0.063 −0.054 0.008 0.023 42
DITM −0.011 0.013 −0.027 −0.021 0.023 0.031 50
Total −0.169 −0.166 −0.294 −0.224 0.841 1.208 495

MSG-c GARCH EGARCH BS mn t n t n t
DOTM 1.544 1.916 3.021 4.143 −0.489 −0.434 3.358 260
OTM 0.370 0.359 0.405 0.409 −0.114 −0.123 0.066 77
ATM 0.078 0.078 0.095 0.097 −0.111 −0.103 −0.033 66
ITM 0.045 0.047 0.059 0.061 −0.063 −0.049 −0.026 42
DITM 0.040 0.042 0.046 0.050 −0.030 −0.019 0.006 50
Total 0.887 1.081 1.672 2.263 −0.298 −0.267 1.768 495

RMSER

MSEG MSEG-c MSG
mn t n t n t

DOTM 0.926 0.714 0.762 0.833 3.551 4.209 260
OTM 0.350 0.373 0.336 0.333 0.522 0.568 77
ATM 0.168 0.215 0.178 0.174 0.148 0.156 66
ITM 0.092 0.148 0.099 0.096 0.090 0.098 42
DITM 0.061 0.098 0.064 0.062 0.063 0.067 50
Total 0.689 0.546 0.573 0.622 2.583 3.060 495

MSG-c GARCH EGARCH BS mn t n t n t
DOTM 2.658 3.187 6.620 8.714 0.814 0.819 9.471 260
OTM 0.655 0.624 0.714 0.685 0.366 0.331 0.552 77
ATM 0.171 0.167 0.206 0.189 0.183 0.165 0.224 66
ITM 0.097 0.099 0.113 0.116 0.101 0.091 0.143 42
DITM 0.065 0.068 0.077 0.082 0.068 0.061 0.099 50
Total 1.945 2.324 4.807 6.322 0.612 0.612 6.868 495
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Table 6: Estimation results for put options（20 days prior to maturity）
MER

MSEG MSEG-c MSG
mn t n t n t

DOTM −0.712 −0.690 −0.672 −0.709 −0.858 −0.833 291
OTM −0.348 −0.308 −0.314 −0.333 −0.448 −0.435 54
ATM −0.162 −0.132 −0.138 −0.149 −0.204 −0.198 64
ITM −0.061 −0.054 −0.041 −0.047 −0.074 −0.076 67
DITM −0.013 0.005 0.002 −0.001 −0.006 −0.016 108
Total −0.414 −0.392 −0.384 −0.406 −0.501 −0.489 584

MSG-c GARCH EGARCH BS mn t n t n t
DOTM −0.864 −0.872 −0.864 −0.842 −0.773 −0.755 −0.850 291
OTM −0.483 −0.490 −0.494 −0.477 −0.330 −0.354 −0.410 54
ATM −0.243 −0.240 −0.237 −0.224 −0.142 −0.164 −0.127 64
ITM −0.108 −0.105 −0.105 −0.091 −0.050 −0.059 −0.010 67
DITM −0.032 −0.030 −0.028 −0.020 −0.005 −0.007 0.014 108
Total −0.520 −0.524 −0.519 −0.503 −0.438 −0.435 −0.474 584

RMSER

MSEG MSEG-c MSG
mn t n t n t

DOTM 0.757 0.747 0.725 0.756 0.876 0.857 291
OTM 0.393 0.377 0.363 0.382 0.485 0.478 54
ATM 0.203 0.218 0.186 0.194 0.252 0.251 64
ITM 0.090 0.139 0.081 0.083 0.102 0.106 67
DITM 0.040 0.056 0.038 0.038 0.042 0.049 108
Total 0.553 0.547 0.528 0.551 0.642 0.629 584

MSG-c GARCH EGARCH BS mn t n t n t
DOTM 0.880 0.890 0.885 0.868 0.812 0.793 0.898 291
OTM 0.514 0.524 0.533 0.523 0.378 0.395 0.545 54
ATM 0.283 0.282 0.276 0.272 0.193 0.205 0.261 64
ITM 0.129 0.126 0.125 0.118 0.090 0.092 0.105 67
DITM 0.053 0.053 0.055 0.051 0.041 0.040 0.054 108
Total 0.649 0.656 0.654 0.641 0.589 0.577 0.662 584
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Table 7: Estimation results for put options（30 days prior to maturity）
MER

MSEG MSEG-c MSG
mn t n t n t

DOTM −0.691 −0.650 −0.660 −0.643 −0.836 −0.832 307
OTM −0.282 −0.242 −0.253 −0.272 −0.388 −0.428 51
ATM −0.147 −0.116 −0.124 −0.140 −0.179 −0.212 65
ITM −0.059 −0.057 −0.047 −0.056 −0.078 −0.098 56
DITM −0.014 −0.030 −0.011 −0.014 −0.026 −0.035 60
Total −0.446 −0.416 −0.421 −0.416 −0.545 −0.554 539

MSG-c GARCH EGARCH BS mn t n t n t
DOTM −0.858 −0.849 −0.845 −0.793 −0.714 −0.698 −0.810 307
OTM −0.477 −0.475 −0.474 −0.436 −0.264 −0.289 −0.352 51
ATM −0.259 −0.258 −0.266 −0.232 −0.131 −0.151 −0.106 65
ITM −0.141 −0.137 −0.142 −0.117 −0.056 −0.067 −0.003 56
DITM −0.064 −0.061 −0.062 −0.048 −0.017 −0.022 0.017 60
Total −0.587 −0.580 −0.580 −0.538 −0.455 −0.453 −0.506 539

RMSER

MSEG MSEG-c MSG
mn t n t n t

DOTM 0.728 0.701 0.704 0.687 0.859 0.855 307
OTM 0.317 0.309 0.293 0.306 0.421 0.454 51
ATM 0.198 0.226 0.185 0.193 0.227 0.248 65
ITM 0.106 0.151 0.100 0.104 0.118 0.130 56
DITM 0.056 0.087 0.054 0.055 0.066 0.073 60
Total 0.563 0.546 0.544 0.533 0.667 0.668 539

MSG-c GARCH EGARCH BS mn t n t n t
DOTM 0.874 0.866 0.865 0.821 0.752 0.732 0.868 307
OTM 0.496 0.498 0.502 0.475 0.308 0.321 0.470 51
ATM 0.287 0.288 0.301 0.278 0.200 0.203 0.242 65
ITM 0.162 0.161 0.172 0.157 0.107 0.110 0.130 56
DITM 0.087 0.086 0.094 0.087 0.058 0.058 0.084 60
Total 0.687 0.681 0.682 0.646 0.581 0.567 0.678 539
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Table 8: Estimation results for call options（by year, 20 days prior to maturity）
MER

MSEG MSEG-c MSG
mn t n t n t

2007 0.004 −0.259 −0.154 −0.219 0.552 0.491 101
2008 0.116 −0.054 −0.059 0.018 1.185 1.974 203
2009 −0.329 −0.135 −0.354 −0.364 0.236 0.282 220
all periods −0.092 −0.127 −0.201 −0.188 0.665 0.978 524

MSG-c GARCH EGARCH BS mn t n t n t
2007 0.607 0.440 0.655 0.526 −0.216 −0.232 −0.040 101
2008 1.208 1.489 3.211 3.351 −0.237 −0.146 2.977 203
2009 0.251 0.239 0.277 0.336 −0.394 −0.376 −0.125 220
all periods 0.690 0.762 1.487 1.541 −0.299 −0.259 1.093 524

RMSER

MSEG MSEG-c MSG
mn t n t n t

2007 0.588 0.457 0.480 0.485 1.459 1.264 101
2008 0.939 0.677 0.654 0.795 2.427 4.134 203
2009 0.461 0.506 0.491 0.504 0.926 1.037 220
all periods 0.705 0.570 0.558 0.630 1.747 2.717 524

MSG-c GARCH EGARCH BS mn t n t n t
2007 1.594 1.235 1.531 1.272 0.502 0.499 1.081 101
2008 2.417 3.043 8.893 8.075 0.530 0.573 7.761 203
2009 0.864 0.861 0.896 0.904 0.547 0.534 0.519 220
all periods 1.751 2.047 5.606 5.091 0.532 0.543 4.866 524
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Table 9: Estimation results for call options（by year, 30 days prior to maturity）
MER

MSEG MSEG-c MSG
mn t n t n t

2007 0.069 −0.133 −0.114 −0.044 0.930 1.332 101
2008 −0.059 −0.241 −0.243 −0.132 1.568 2.035 206
2009 −0.417 −0.102 −0.447 −0.422 −0.002 0.237 188
all periods −0.169 −0.166 −0.294 −0.224 0.841 1.208 495

MSG-c GARCH EGARCH BS mn t n t n t
2007 1.410 1.468 1.838 1.812 0.005 −0.046 0.408 101
2008 1.266 1.615 2.849 4.082 −0.325 −0.235 4.162 206
2009 0.190 0.287 0.294 0.512 −0.431 −0.421 −0.124 188
all periods 0.887 1.081 1.672 2.263 −0.298 −0.267 1.768 495

RMSER

MSEG MSEG-c MSG
mn t n t n t

2007 0.678 0.539 0.514 0.563 1.935 2.435 101
2008 0.801 0.552 0.599 0.704 3.751 4.373 206
2009 0.548 0.543 0.574 0.553 0.370 0.712 188
all periods 0.689 0.546 0.573 0.622 2.583 3.060 495

MSG-c GARCH EGARCH BS mn t n t n t
2007 2.398 2.521 3.401 3.556 0.645 0.613 2.725 101
2008 2.452 3.069 7.023 9.412 0.634 0.656 10.460 206
2009 0.537 0.694 0.761 1.161 0.569 0.559 0.581 188
all periods 1.945 2.324 4.807 6.322 0.612 0.612 6.868 495
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Table 10: Estimation results for put options（by year, 20 days prior to maturity）
MER

MSEG MSEG-c MSG
mn t n t n t

2007 −0.438 −0.352 −0.368 −0.430 −0.520 −0.532 113
2008 −0.287 −0.240 −0.267 −0.280 −0.394 −0.379 216
2009 −0.511 −0.538 −0.490 −0.502 −0.583 −0.562 255
all periods −0.414 −0.392 −0.384 −0.406 −0.501 −0.489 584

MSG-c GARCH EGARCH BS mn t n t n t
2007 −0.538 −0.559 −0.565 −0.566 −0.429 −0.439 −0.555 113
2008 −0.412 −0.409 −0.390 −0.357 −0.333 −0.321 −0.304 216
2009 −0.603 −0.606 −0.609 −0.597 −0.531 −0.530 −0.582 255
all periods −0.520 −0.524 −0.519 −0.503 −0.438 −0.435 −0.474 584

RMSER

MSEG MSEG-c MSG
mn t n t n t

2007 0.566 0.523 0.506 0.568 0.651 0.654 113
2008 0.430 0.421 0.421 0.432 0.556 0.537 216
2009 0.633 0.644 0.613 0.627 0.703 0.687 255
all periods 0.553 0.547 0.528 0.551 0.642 0.629 584

MSG-c GARCH EGARCH BS mn t n t n t
2007 0.655 0.678 0.687 0.688 0.579 0.580 0.706 113
2008 0.561 0.563 0.546 0.519 0.495 0.469 0.548 216
2009 0.713 0.717 0.719 0.709 0.663 0.654 0.727 255
all periods 0.649 0.656 0.654 0.641 0.589 0.577 0.662 584
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Table 11: Estimation results for put options（by year, 30 days prior to maturity）
MER

MSEG MSEG-c MSG
mn t n t n t

2007 −0.369 −0.241 −0.300 −0.298 −0.521 −0.585 110
2008 −0.380 −0.349 −0.371 −0.356 −0.465 −0.467 195
2009 −0.536 −0.555 −0.519 −0.522 −0.623 −0.612 234
all periods −0.446 −0.416 −0.421 −0.416 −0.545 −0.554 539

MSG-c GARCH EGARCH BS mn t n t n t
2007 −0.590 −0.601 −0.595 −0.571 −0.322 −0.337 −0.619 110
2008 −0.513 −0.494 −0.491 −0.420 −0.433 −0.416 −0.337 195
2009 −0.647 −0.643 −0.647 −0.621 −0.536 −0.537 −0.594 234
all periods −0.587 −0.580 −0.580 −0.538 −0.455 −0.453 −0.506 539

RMSER

MSEG MSEG-c MSG
mn t n t n t

2007 0.477 0.413 0.425 0.398 0.642 0.677 110
2008 0.494 0.466 0.485 0.466 0.604 0.602 195
2009 0.648 0.652 0.633 0.631 0.726 0.713 234
all periods 0.563 0.546 0.544 0.533 0.667 0.668 539

MSG-c GARCH EGARCH BS mn t n t n t
2007 0.675 0.686 0.686 0.663 0.460 0.446 0.749 110
2008 0.630 0.613 0.613 0.552 0.548 0.526 0.574 195
2009 0.736 0.732 0.734 0.708 0.655 0.645 0.722 234
all periods 0.687 0.681 0.682 0.646 0.581 0.567 0.678 539

5 Conclusions and Future Study Themes

This study focused on the bulls and bears of underlying asset price fluctuations, and evaluated

Nikkei 225 option prices using MS-EGARCH models, in order to verify the effectiveness of

the MS-EGARCH models in the Nikkei 225 Options market. The main findings of this study

are summarized below.

1. The bull and bear of underlying asset prices cannot be captured with any models except

the MSEG-t model.

2. For the call options of 20 days before expiration, the MSEG-n model is selected under

MER, and the EGARCH-n model is selected under RMSER. When the period before
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expiration is 30 days, the performance of the MSEG-t model is the best in either case.

Accordingly, for call options, whose period before expiration is long, it is better to

adopt a model that can capture bull and bear for evaluation.

3. On the other hand, for put options, values are slightly better in the MSEG-c model in

which only volatility undergoes switching, regardless of the period before expiration.

Accordingly, it is unnecessary to consider the bull and bear of underlying asset prices.

4. In the phase of the increase in volatility just after Lehman’s fall, call option evaluation

in the MSG, MSG-c, GARCH, and BS models is quite overpricing, but the performance

of the MSEG, MSEG-c, and EGARCH models is extremely excellent.

5. Formulation based on asymmetry between rates of return of underlying asset prices

and volatility, and the assumption that expected rates of return, the distribution of

the error term, and volatility follow Markov-switching processes, are both of crucial

importance in evaluating option prices.

The future study subjects include the following three:

1. Make a comparison with the option prices and performance based on the stochastic

volatility model, which is another representative volatility-changing model.

2. Conduct formulation, taking into account risk premium in the process of the underlying

asset return rate, rather than assuming risk neutrality of investors.

3. Analyze the option prices in the volatility-changing model in detail. Study particularly

implied volatility and volatility smile, etc.
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