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1. Introduction

Interest in time series data of returns on risky assets such as stocks, stock indices, and foreign exchange rates
focuses on the variation of the second-order moment called volatility. In particular, stochastic volatility (SV)
models are widely used in the analysis of the data of returns on risky assets'”. However, the inclusion of latent
variables in an SV model makes it difficult to estimate the parameters of the model by maximum likelihood, so
alternative estimation methods are needed. To meet this need, many previous studies have used Bayesian
estimation based on Markov chain Monte Carlo (MCMC) methods” . In an SV model, it is necessary to
simultaneously sample the parameters describing the model and the latent variable, volatility, from the posterior
distribution. Therefore, the number of volatility data becomes the same as the number of observations, so it is
important to sample efficiently.

The Metropolis-Hastings (M-H) method and the Gibbs sampling method have been used as MCMC methods in
previous studies using SV models. However, these MCMC methods have, among their problems, a small rejection
rate when many random variables are estimated at once, so Takaishi (2008, 2009, 2013) proposed Bayesian
estimation using the hybrid Monte Carlo method in the case of SV model estimation. Nugroho and Morimoto
(2015) conducted an empirical analysis of the Tokyo Stock Price Index and Standard & Poor’s 500 stock index
using an SV model with the Riemann manifold Hamiltonian Monte Carlo method, which is a modification of the
hybrid Monte Carlo method. In the present study, we propose estimating the parameters of an SV model by
Bayesian estimation using the Hamiltonian Monte Carlo (HMC) method®’.

The HMC method uses the molecular dynamics method developed in physics to update the parameters of the
statistical model, and the M-H method is used to adopt or reject the updated parameters. The molecular dynamics
method is used to numerically estimate the motion of interacting molecules and atoms based on classical mechanics
such as Newtonian mechanics and analytical mechanics®.

In this paper, we explain the SV with leverage (SVL) model”, which is an extension of the basic SV model that
uses not only the normal distribution but also the f-distribution for the distribution of the error term. In addition, we

show an example of applying these models to the returns data of the Nikkei 225. As in previous studies, we found
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that the model provides a fit better with a Z-distribution than with a normal distribution in terms of the existence of
the leverage effect and the error distribution. Furthermore, we verified that Bayesian estimation by the HMC
method is effective for the SV model.

The remainder of this paper is organized as follows: Section 2 describes the continuous-time SV models and
discrete approximations used in this study. Section 3 explains Bayesian inference with the HMC method for SV
models. Section 4 introduces the SV model with asymmetry and the SV model with a fat-tails distribution. Section
S describes the data and the empirical results for the Nikkei 225 used in the analysis and discusses their

implications. Section 6 presents conclusions.
2. Continuous-time SV models and discrete approximations

2.1 Continuous-time SV model
In the continuous-time SV model, the price of a risky asset is lognormally distributed and described by the

following geometric Brownian motion model.
dS=uSdt+ oSdz. (2.1)

Here,  is a drift term, d? is a small change in time, 0 is the standard deviation, and dz: is the Wiener process. In
finance theory, o is called volatility, whereas in financial econometrics, often 6 is called volatility. In the present
study, we follow the latter and define 0 as the volatility. The variation of ¢” is formulated as a continuous-time

process as follows:
do®=¢o?dt+ 5o%dzs. (2.2)

Here, the Wiener process dz> may or may not be correlated with dz; in (2.1), corresponding to 0 %0 and o =0,
respectively. In addition, most studies of continuous-time SV models for risky asset prices have formulated the
variation of 0 as the following continuous-time stochastic process with the mean-reverting property like the

Ornstein-Uhlenbeck process:
do®=kl0—o*]dt + Sodz,. (2.3)

Here, 6 is the long-run mean and « is the speed of long-run mean reversion. Thus, 6 reverts towards long-term

mean 0 at speed k.

2.2 Discrete approximations
In order to conduct an empirical study, we need to convert the continuous-time model in Egs. (2.1) and (2.3)

into a discrete-time model. The discrete approximation of Eqs. (2.1) and (2.3) is as follows:

yi=dexp (%)ut, t=1,..n, (2.4)
htzght—l—’_”[, t=1,...,n, (25)
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Here, y: is the rate of return, ¢*exp (k)= 0" is the variance of rate of return ¥, and ¢ is a scale parameter. z; has
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mean 0 and variance 1 and #: has mean 0 and variance o+, and these error terms each follow a normal distribution.
Prefix “i.i.d.” denotes independent and identically distributed. As shown, #; and 7, are assumed to be uncorrelated

or correlated. In the following, we simply refer to the discrete approximation SV model as the SV model.
3. SV model and Bayesian inference

3.1 SV model
The SV model, which is usually used in time series analysis in finance, describes the process of the rate of return

y: and volatility o7 =exp (h/2) as h=1In 67, and is expressed as follows:

yr=exp (%)uh t=1,.,n, (3.1)
ht+1=ﬂ+¢(}lt_[l>+77t, t=0,...,ﬂ_1, (32)
0 1 0
(ut)~i.i.d./l/([ ] i ) (33)
Nt 0 0 Oy

Here, %, is a latent variable indicating the variation of volatility, ¢ is the mean volatility, and ¢ is a parameter
indicating the persistence of shocks in volatility. For stationarity, we assume that | ¢ | <1. Equation (3.2) shows
that the latent variable %: follows a first-order autoregressive process.

Representing the unknown parameters (¢,0y,1) collectively as 0, the likelihood function of the SV model can be

expressed as follows:

LO)= [ [y 1h) s (h|O)dR

=/-/1l /27re)1p ) P [_ ZGX?W]

=t 1 o {ht+1_[1_¢(kt—/l)}2
1 exp[ 267(1—0?)
¢ [ A=¢)u—w)’
XiZmﬁ ex [ 207 ]dhl...dhr. (3.4)

Since this integral cannot be solved analytically, we propose using Bayesian estimation for parameter estimation.

3.2 Bayesian estimation

Let 6 be the unknown parameter set and f (6) be the prior distribution of €. In the Bayesian estimation method,
we consider what kind of posterior distribution f (@ | data) will replace prior distribution f (6) before obtaining the
data. Posterior distribution (@ |data) can be rewritten as follows from Bayes’ theorem:
f(0,data)

f(data)

__f (0,data)

[1(0.dataras

__S(data|0)1(6)
[f(data| 6)£(6)d0

f(0|data)=

(3.5)
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Here, f f(data| 0) f(0)d0 acts as a normalizing constant independent of @ and can be ignored. Therefore, we can

express the relationship as follows:
f(0|data)<< f(data| 0) f(6). (3.6)

Here, f (data| @) denotes the likelihood. In this case, the estimated value of parameter @ is the expected value of

the posterior (posterior mean) of the distribution. This can be expressed as follows:
ELf (8| data))= [ (6| data)db. (37)

In the case where the posterior distribution cannot be obtained analytically by Bayes’ theorem, we can obtain the
posterior distribution by sampling parameter € from posterior distribution f(6|data). In the case of nonlinear
models, which are often used in economics and finance, the posterior distribution cannot be determined analytically
in most cases.

The Gibbs sampling, the M-H, and the HMC methods are typically used in such cases. However, the conditional
posterior distribution of the unknown parameters (¢,0n,1) of the SV model requires the addition of the latent
variable A to the condition, and it is important to know how to sample h efficiently. Therefore, we also treat the
latent variable A as an unknown parameter. Although several methods that have been proposed so far - e.g., the
single-move sampler, the multi-move sampler, and the mixture sampler - in this study, we propose using the HMC

method.

3.3 Bayesian inference with HMC method

We would like to discuss Bayesian estimation using the HMC method in this section, but such content on the
HMC method would overlap with that of Totsuka and Mitsui (2022), which reports other research of the same
project. Therefore, for details on Bayesian estimation using the HMC method, we ask the reader to refer to Totsuka
and Mitsui (2022), which uses basically the same algorithm for Bayesian estimation. For the calculation conditions

and convergence diagnosis in Bayesian inference, we again ask the reader to refer to Totsuka and Mitsui (2022).
4. Extension of SV model

4.1 8V model with asymmetry

It is known that there is asymmetry in the relationship between the rate of return and the volatility in the stock
market. In particular, when the rate of return falls, the volatility tends to rise in the next period, and when the rate of
return rises, the volatility tends to fall in the next period (the leverage effect). This suggests that there is negative
correlation between the rate of return and the volatility. To include such asymmetry in the model, we can consider
adding the correlation between z; and 7: to the model in Egs. (3.1) and (3.2). If we construct the SV model

assuming that #; and 7; have correlation p, this is expressed as follows:

(:)N“M ([8] 1 MD' (a.)

00, O
The model consisting of Egs. (3.1), (3.2), and (4.1) is called the SVL model. When the unknown parameters
(¢,04,0,1) of the SVL model are collectively represented by 0, the likelihood function f (y | @) of the SVL model

can be expressed as follows:



Bayesian Estimation of Stochastic Volatility Model Using Hamiltonian Monte Carlo Method and its Application to Nikkei 225 Data (Mitsui, Totsuka)

rwio=[-[1I /Zﬂexp Ok [ 2exf<h,>]

n—1

1
>< —
N o iar e

_ Ahi—p—¢(h— 1) — poryexp (— h/2)}’

2(717(1 02>
J1—¢? [_ (1—¢2)(h1—u)2]
X Norm exp 207 dh...dhn. (4.2)

Since this integral cannot be solved analytically, the parameters of the SVL model are difficult to estimate by

maximum likelihood. Therefore, we propose using the HMC method along with the SV model.

4.2 SV model with fat-tails

The distribution of the rate of return on risky assets has long been known to be thicker than the normal
distribution, as pointed out by Mandelbrot (1963) and Fama (1965). In order to consider an error distribution with a
thick base, we introduce a random variable that follows the Z-distribution. In this case, the process of the rate of

return and volatility is described as follows:

Yr=exp <%>«/gu,, t=1,..,n, (4.3)
hm=p+d(hi—w)+n, t=0,..,n—1, (4.4)
z;~i.i.d.IG(%,%). (4.5)

where IG denotes the inverse gamma distribution, and the error term (2,,7:) follows Eq. (3.3) or (4.1). The 'z
term follows the f-distribution z;~ 7.2.d.IG(v/2,v/2), which has v degrees of freedom. In this paper, the model
consisting of Eqs. (3.3) and (4.3)-(4.5) is called the SVt model, and the model consisting of Egs. (4.1) and
(4.3)-(4.5) is called the SVLt model.

When the unknown parameters of the SVLt model (#,04,0,4,V) are collectively represented by 6, the likelihood

function of the SVLt model can be expressed as follows:

L(0)=f~-ff(y|h,z)f(hIz,0)f(z| 0)dhdz

n 1 ’
A et |- ]

X"ﬁl 1 exp | — {h:+1—u—¢(ht—u)—06nytexp (_ht/z)/‘/g}z
B 2mot/1—p? P 202(1—p?
SRAL . [_ A=) Un—p’
V2ro? 20,
ﬁ (v/2)2 _(”/ZH)eXp(—L)dh dhndzs...dz (4.6)
= V/Z 22[ Leeo 7 Leee Ne .

Like in the SVL model case, we propose using Bayesian estimation to estimate the parameters of the SVLt model
with the HMC method.
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5. Application to Nikkei 225 Data

5.1 Data

In our empirical analysis, we used the closing prices of the Nikkei 225 obtained from Bloomberg. If S; is the
stock price at time Z, then the daily rate of return y; at time ¢ is calculated as ;= (n S;—In S;-1) X 100. The data
period of our dataset is January 5, 2015, to December 30, 2019, so the sample period for daily returns is January 6,
2015, to December 30, 2019, giving us a total of 1,221 observations. Table 1 shows the summary statistics for daily
returns of the Nikkei 225 over our sample period. The negative skewness value indicates that the data follow a
leftward skewed distribution. In addition, the fact that the excess kurtosis is above 0 indicates that the base of the

distribution is thicker than that of a normal distribution.

Table 1: Summary statistics for Nikkei 225 daily returns
January 6, 2015 - December 30, 2019

No. of Obs. Mean Std. Dev. Skewness Exc. Kurtosis Max. Min.

1,221 0.0251 1.2257 -0.3414 6.1453 7.4262 -8.2529

5.2 Analytical model
The four SV models used in this study are summarized as follows:
1. SVn model: No leverage effect. The error follows a normal distribution.
2. SVLn model: The leverage effect is present (asymmetry is present). The error follows a normal
distribution.
3. SVt model: No leverage effect. The error follows a #-distribution.
4. SVLt model: The leverage effect is present. The error follows a Z-distribution.

The parameters of these models are estimated by Bayesian estimation using the HMC method.

5.3 Empirical results

Table 2 shows the estimation results of the SVn, SVLn, SVt, and SVLt models using the daily returns of the
Nikkei 225 for each parameter in terms of the posterior mean and standard deviation, 95% credible interval,
Gelman-Rubin statistic“, and inefficiency factor (IF).

The parameter ¢ expresses the persistence of shocks to volatility; as shown, the posterior mean of ¢ is around
0.83 in all models, indicating a high persistence of volatility. The parameter o represents the correlation between
the daily rate of return and the volatility of Nikkei 225 and appears in the SVLn and SVLt models. Since the
posterior distributions of o are —0.5308 and -0.5634, respectively, and furthermore, since the 95% credible
intervals are [-0.6462,-0.4035] and [-0.6736,-0.4432], respectively, we can confidently conclude that o is
negative. The posterior probability that o is negative is greater than 95% . This negative correlation between the
daily rate of return of Nikkei 225 and the logarithm of volatility indicates the existence of the leverage effect.

The posterior mean of v is 22.1928 in the SVt model and 20.3228 in the SVLt model, indicating that the
distribution of the daily returns of the Nikkei 225 is thicker than a normal distribution. It is easily seen that the
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Table 2: Estimation results for parameters

Line 1: Posterior mean (Std. Dev.), Line 2: 95% Credible interval,
Line 3: Gelman-Rubin statistics, Line 4: Inefficiency factor

SVn

SVLn

SVt

SVLt

0.8070 (0.0378)
[0.7261, 0.8739]

0.8357 (0.0380)
[0.7631, 0.9126]

0.8284 (0.0367)
[0.7488, 0.8923]

0.8391 (0.0260)
[0.7837, 0.8854]

1.0001 1.0001 1.0002 1.0002
14.87 10.87 41.84 18.87
0.6361 (0.0648) 0.5910 (0.0576) 0.5871 (0.0652) 0.5682 (0.0477)
i [0.5173, 0.7693] [0.4901, 0.7009] [0.4692, 0.7238] [0.4792, 0.6672]
7 1.0002 1.0002 1.0003 1.0002
25.16 14.84 70.01 33.68
~0.5308 (0.0620) ~0.5634 (0.0592)
[-0.6462, ~0.4035] [-0.6736, ~0.4432]
e 1.0002 1.0009
7.33 17.25
22.1928 (15.3968) 20.3228 (14.4584)
[7.1048, 65.5541] [7.2888, 59.5828]
v
1.0032 1.0026
257.67 178.83
~0.1797 (0.1257) ~0.0702 (1.3422) ~0.2651 (0.1395) ~0.1813 (0.1200)
[-0.4200, 0.0664] [-0.3211, 0.1753] [-0.5397, 0.0034] [-0.4141, 0.0516]
# 1.0000 1.0030 1.0001 1.0004
3.05 4.96 3223 26.59
ML ~2794.8802 25075152 -3162.0423 ~2942.1451

Gelman-Rubin statistic for each parameter is approximately 1 for all models; therefore, we can say that the obtained
sample series converges well to the invariant distribution. Looking at marginal likelihood (ML)7>, we see higher
values for the -distribution than for the normal distribution, and higher values without than with the leverage
effect. Thus, among the four models, ML is highest for the SVt model, indicating that it is the best-fitting model for
the daily returns of the Nikkei 225.

6. Conclusion

In this paper, we surveyed the Bayesian estimation of the SV model using the HMC method, and reported an
empirical study using the daily returns data of Nikkei 225. As an extension of the SV model, we introduced an
asymmetric SV model and an SV model with a fat-tailed distribution using the #-distribution. An empirical analysis
revealed the existence of the leverage effect and the better fit of the model to the #-distribution than to the normal
distribution. Furthermore, it was verified that the HMC method is effective in Bayesian estimation of SV models.
Future work will include comparing the efficiency of the HMC method with other MCMC methods, such as the
Gibbs sampling and the M-H methods.
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Notes
1) For more information on SV models and their development, see Ghysels et al. (1996) and Shephard [ed.] (2005).
2) Empirical studies using Bayesian estimation of SV models with MCMC methods for returns on risky assets include
Yu (2005), Omori et al. (2007), Omori and Watanabe (2008), Takahashi et al. (2009), and Nakajima and Omori
(2010).
3) For details, see MacKay (2003, Chapter 30) and Neal (1994, 2011).
4)  For details, see Alder and Wainwright (1956).
5) A model with asymmetry in volatility is sometimes referred to as an asymmetry SV model.
6) For details, see Gelman and Rubin (1992) and Gelman (1996).
7)  For details, see Newton and Raftery (1994).
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