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1. Introduction

We consider a queueing system with a random arrival acceptance window (RAAW). An
ordinary simple queueing system consists of a server that processes requests of customers,
and a waiting line (a queue) where customers have to wait before receiving services. Moreover,
there is an arrival stream of customers to the system. In this queue, the terrible congestion
may occur depending on the stream of customers. Preparing in such cases, in the queue with
RAAW, the system controls the flow of arriving customers and congestion in the queue, by
opening and closing the window alternately. First of all, we start with the mathematical model
of this queue.

1.1 Mathematical Model

In an ordinary queue, the stream of customers is described as an arrival process and the aspect
of services that the server processes according to requests of customers is referred to a service
process. The simple single server queue is termed the A/S/1 queue, where A refers to the
form of the arrival time distribution, S to the form of the service time distribution, and the “1”
indicates the single server. This is well known as the Kendall’s notation.

On the other hand, in a single server queue with RAAW, the opening and closing of a
window is alternately repeated. While the window is open, the system can accept at most m
customers, where m is a positive integer. Let ¢, be the instance when the n th window is open,
then the duration 7, = t,,,, — t, is called the n th cycle time, where 0 <, <t,<- - -.

Let 7, be the actual arrival instance of the k th customer, for k =1, 2, - - -, m, during
the time interval [t,, ¢,.,), where ¢, < T,,; < T,, <* * * < Tym- If Ty < £,21, then the m th customer
during [t,, t,.,) is accepted to the system and the window is closed at t,,,. If T, > t,.;, then
the window is closed just before ¢,,, and the next window immediately opens at ¢,.,. While
the window is closed, the system can accept no customers. That is, if 7, < {,,; < Tpe.1, O0ly &
customers are accepted to the system. Through these two periods, customers accepted to the
system are served continuously.

This queue is denoted by a string of the type A|B"/S/1, where A refers to the form of
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the cycle time distribution, B to the form of the arrival time distribution, S to the form of the
service time distribution. In particular, if m = 1, it is merely written as A|B/S/1.

A typical example of the queue with RAAW is a scheduled arrival system, like a dental
appointment system in Japan. In this system, a customer (patient) who should receive treat-
ment will be scheduled his or her arrival time. If he or she would not enter the system by the
appointment time, then he or she could not receive the service. Moreover, we can observe
queues with RAAW in practical situation, for example, production systems, business processes
and so on.

1. 2 Outline of Paper
This paper is essentially comprised of two problems on the queue with RAAW.

We first investigate the system state probabilities and derive the stationary distributions
of the queue-length and the waiting-time processes in the next two sections.

Let Q(t) be the number of customers in the system at time ¢. We now choose ¢, as the
imbedded points for the queue-length process {Q(¢); ¢ > 0} and define the imbedded process
{Q,; n >0} where Q, = Q(t, — 0). Let W(¢) be the total service time of customers in the system at
time ¢, then the {IW(¢); ¢ > 0} is called the workload process. Let I, be the waiting time of the k
th customer during [t,, ¢,.,), then it is described by

[W(tn) - (Tnk - tn)]+7 tn S Tny, < tn+17
0, otherwise,

where [x]* = max(x, 0).

Section 2 deals with M|M/M/1 queue, where M denotes an exponential distribution. That
is, the durations 7, are independent and common exponentially distributed random variables, at
most one customer can be accepted during [t,, t,,,), the delayed-arrival time of the customer,
T.1 — t,, has an exponential distribution, and service times are also exponential. Section 3
analyzes GI|GI/M/1 queue, where GI means the process is generally distributed. That is, the
{T,} is a renewal process, at most one customer can be accepted during [¢,, ¢,.,), the delayed-
arrival time of the customer is generally distributed, and service times are exponential. In
these two sections, we derive the stationary distributions of the queue-length and the waiting-
time processes for each system.

We next consider the problem to determine the optimal window size in some sense. The
system makes profit on services for accepted customers, but incurs the waiting cost for each
accepted customer. Moreover, if a customer is not accepted, the system suffers an opportunity
loss. Section 4 studies the optimal window size to maximize reward of the system for the
GIIGI/M/1 queue. And it is determined by numerical treatment for some queues with RAAW.

Finally, in Section 5 we express further problems for queues with RAAW.

The queue with RAAW was first introduced by Doi, Chen and Osawa (1997). They
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considered GI|M/M/1 queue. Moreover, Osawa, Doi, Chen and Shima (2000) dealt with
GI|GI/M/1 queue. We shall refer to their results in section 3. In these papers, stationary distri-
butions of queue-length and waiting processes have been obtained. The problem to determine
the optimal window size has been seen in Doi, Osawa and Chen (2002). In section 4, we define
a slight different reward from one considered in their paper.

2. MIM/M/1 Queue

In this section, we study the M|M/M/1 queue. We assume that the cycle times {7} are
independent and common exponentially distributed random variables with finite mean 1/A. We
also assume that delayed arrival times (t,;, — t,} are independent and common exponentially
distributed random variables with finite mean 1/v. Service times of accepted customers have
an exponential distribution with parameter u. For the queue-length and the waiting-time
process, we consider the necessary and sufficient condition that the limiting distribution of the
processes exists and derive their stationary distributions.

2.1 Queue-Length Process
Consider the queue-length process {Q(¢)} of the M|M/M/1 queue. For the purpose, let J(t) be
the state of the window at time ¢, that is,

_ [ 1, if the window is open at time ¢,
N 0, if the window is closed at time ¢.

The state of the process {(J(), Q(t))} is given by (i, j), i = 0, 1, j > 0. Define the following matri-
ces

AF(B 8> A1:<_<Aoﬂt> —(VAM))’
A2:<g 2) and B00—<_0)\ _AV>

Then {(J(¢), Q(¢))} is a quasi birth-death process with the transition rate matrix @
A, A Ay O

o_| 0 A A A o
| 0o o0 A, A A, 0

where ( is a matrix of all zeros of the dimension 2.
Let m,(j) be the stationary probability of state (i, j), then the probability vectors m(j) =
(mo(j), m(j)) have a matrix geometric form, that is,
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71'(]) :ﬂ(l)Rj_17 ]: 1727'” ’
where R is the minimal matrix satisfying that
Ao+ RA, + R*A, = 0.

Note that R is termed the rate matrix. Moreover, r(0) and (1) satisfy that

w0 (50 Py, ) -0

To determine these probability vectors, we need the normalizing condition
(0)e +m(1)(I - R) e =1,

where e is a column vector of all 1s.

2. 2 Workload Process
We easily derive the stationary distribution of the workload process by using results in the
previous subsection. Define F(x) = P[W(¢) < x], then we have

:Zn ) <z|Qt)=j]

Jj=

For x> 0, F(x) has the density f(x) given by
v) = Y ur(R gy (x) = p()e I Foe,

e (uxy

I ,x>0,j=0,1,2,---.Since F(0) = m(0)e, we get

where ;(x) =
F(z) =1-—m(1)I — R) e rd-Rre

3. GIIGI/M/1 Queue

In this section, we deal with the GI|GI/M/1 queue. We assume that the cycle times {7,} are
independent and identical distributed (i.7.d.) random variables with a distribution function
A(x) which has the finite mean 1/A. We also assume that delayed arrival times {t,, — ¢,} are
independent and identical distributed random variables with a distribution function B(x). Then
we should note the probability p, that a customer is accepted to the system during a cycle time
is given by

pa = / " B(y) dAw). W



Queues with Random Arrival Acceptance Windows (Osawa)

n, is called as the acceptance probability. Service times of accepted customers assumed to
be exponentially distributed with parameter u. For the queue-length and the waiting-time
process, we consider the necessary and sufficient condition that the limiting distribution of the
processes exists and derive their stationary distributions.

3.1 Queue-Length Process
It is clear that the imbedded queue-length process {Q,; n =1, 2,...} constitutes a Markov chain.
Define transition probabilities for this process

PU:P[Qn+1:]|Q7L:Z]7 7’7]207

we then have, forj > 2,
P = / piv1-(y)B(y) dA(y) + / pi—;(y)B(y) dA(y), i > ],
0 0
Py = [ emB@aAw), i=j-1
0

Moreover, for j =1 and 0,

P = [ Boawiaw + [ [ B otaag)
///u HudtdB(r)e " dA(y), i > 1,

P = / / dB(7) e 07 dA(y).

Po = [ [ meaaiBwaam + [ [ BOw@md - e 0)aa0)
///u DpdtdB(r)(1 — e H D) dA), 0> 1,

Py _/0 //dB )(1 — e =) dA(y).

For any other cases, i.e., j> i + 2, we have P; = 0.
Thus we obtain the transition probability matrix of the GI/M/1 type;

Po FPor 0 -
Py Pyoay 0 -
Py Py a; ag 0
P = P30 P31 g9 a1 Qg 0
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where ay is define by

a, = /Ooo,uk(y)B(y)dA(y)+/Oooﬂk—1(y)B(y)dA(y), k>,

aw = / e mB(y) dA(y).

From the fundamental theory of the GI/M/1 type matrix, see Neuts (1981), we can see
the behavior of the process {Q,}. Denote the Laplace Stieltjes transform concerning the distri-
bution A(x) as a[s];

als] = /0 T e dA), s> 0.

Let ®(z) be the generating function for a sequence {q,, k > 0}, then we have

o0

Bz) = D s’ = /OOO e MUTB(y) +2B(y)}dA(y), 0<z< L @)

k=0

We then have the following. For the details, refer to Osawa, Doi, Chen and Shima (2000).

Lemma 3.1 Let p = A/, then the equation z = ®(z) has the unique solution C such that 0 <
<1lifandonly if pp, < 1.

Theorem 3.2 The queue-length process {Q,} is positive recurrent if and only if pp, < 1. Under
this condition, the limiting distribution is given by

1—o0, k=0,
7(k) = lim P[Q, = k] =

n—oo

o(1— O, k=1,2,...,
where
o 3l |

| Kaat) + o1 - 5181

Sor distribution functions K and I defined by
K(x)=1—e #1707 [(z)=1, x>0.
Moreover, for a distribution function G on [0, 00), we here used a function

5lc) = / N / " A(B Q) (1) e dA(y).
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From this theorem, we can obtain the mean queue-length L and its variance V, as

follows;
L:mkﬁk: 9 VL:M
2 hnlh) = 7= -

3. 2 Queue-Length Process at Arrival Epochs
We study the queue-length distribution at actual arrival epochs in the steady state. Define the
conditional probability (k| t) as follows;

Tk |t) =PlQ(Tn, —0) =Fk|t, < Tny <tug1, T, —tn=1], k=0,1,2,---.

Then {r(k|t), k > 0} represents the queue-length distribution just before the actual arrival
epoch of a customer whose delayed arrival time is ¢ during a cycle time interval. Using results
in the previous subsection we can get
77(]{3 | t) = Zﬂ-(l>p’z—k(t> = U<1 - <)Ck_1 6_/L(1_C)t7 k= 17 27 )
i=k

o0 i—1

7(0]t) = m(0)+ Zﬂ'(l) (1 — Zuj(t)> — ] — g e r1=0t
i=1 j=0

And its mean and variance are given by

L*(t) = 1i7§ e H(1=0t, V() = Weﬂug)t_

Moreover, we have the queue-length distribution {r*(k), k£ > 0} at actual arrival epochs as
follows;

. IR T R b _ k—1 _
(k) = pA/o /0w<k|t>dB<t>dA<y>—n<1—<>< k=12,

1 0 ry
70) = 7(0 | £) dB(t) dA(y) = 1 1,
/0 K(y)dA<y>/° /

where 5= —o 2 /W/WK@dB@dA@) 3)
| Kwaam o

Thus its mean and variance are given by

nl+¢—mn)

[
- (1=¢)

¢
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3. 3 Waiting Time
We define the conditional waiting time distribution of an accepted customer under that his or
her delayed arrival time is ¢

Fe(zlt) = P[Wn, < 2|ty < 7oy < turts oy — tn = t],
Fr(x) = P[W,, <z|t, <7n <tny1, |-

Then we have

F*(¢T|t) = Zﬂ'k Sx’Qn:ka tn§7—m<tn+177—m_tn:t]
k=0 00 k—1
= 1—U+ZU 1{1—Zui(t+x)}
k=1 1=0
— 1 — gerA=Q(t+z)

Let W*(t) and Vi (t) be the mean and variance of the conditional waiting time, respectively.
Then we get

- O w0t ey = 92 70)  uaeen
WO=amg T W g

Moreover, we have the actual waiting time distribution as follows;

/ / (x[t) dB(t) dA(y) = 1 —ne #1=97,

where 7 is defined by (3). Hence the mean and the variance of the actual waiting time are
given by

c_ . _ n2—mn)
A7 (s R (e

4. Optimal Window Size

In this section, we deal with the optimal arrival acceptance window size for the GI|GI/M/1
queues with the deterministic or random arrival acceptance window. We introduce following
costs to the system, that is, the system gets the profit by providing the customer service (the
service profit), but incurs the waiting cost for each accepted customer. Moreover, if a customer
is not accepted, the system suffers an opportunity loss. Let A be the window size or the mean
cycle time, i.e., A = 1/, then the reward that the system gains is dependent of A.

Denote the service profit and the waiting cost per unit time by C, and C,, respectively.
Let C, be the amount of damages by an opportunity loss of a customer. We then define an
expected reward r(A) per a customer or a cycle time;
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1
r(A) = pA;CS — (1= pa)Cyp— W*C,,.

Let 7, be the total hours of operation for the system, then the expected number opening RAAW
is AT.. Thus the total expected reward R(A), called as the reward function, is given by

R(A) = \Tr(A).

Using the results in the previous section, we consider the optimality of the RAAW size to
maximize this reward function.

4.1 Some Systems
Consider the queue of the D|GI or M|GI type, where D means a deterministic distribution.
In this subsection, we deal with the following four cases; D|M/M/1 queue, D|D/M/1 queue,
M|M/M/1 queue and M|D/M/1 queue.
(4.1) DIM/M/1 queue

In this queue, the delayed arrival time of a customer is exponentially distributed with
mean 1/v. From (1), the acceptance probability for a customer is obtained by

pa=1—e"

®D(z) defined by (2) is
P(z) = e rI=2/A {1-(1- z)ef"/)‘} .

Under pp, < 1, we thus have the solution £ of the equation z = ®(z), 0 <z< 1. And o in Theorem
3.21is given by

_ V(V — MC) (e—u/)\ _ 6—u/>\)

k(v — p)
where
K= (v = {1 = MO {1 = (1 = Qe — e,

Then n defined by (3) is reduced to
ov{l — e~ Hr1=0)/NY
”‘M@+uu— OHL — emH1-0/A}

From these values, we can get the stationary distributions given in section 3 and observe the

optimal window size numerically.
(4.2) DID/M/1 queue

Consider a queue with a deterministic delayed time with the mass at 1/v, where A < v.
Then we have p, = 1 and
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B(z) = eI

(4.3) MIM/M/1 queue
Consider a queue with an exponential delayed time with mean 1/v, then we have

v
e

pPaA =

Moreover, the equation z = ®(z) is reduced to

22— AN+ v+ p)z+ v =0.

Thus we get
1
—_ — — 2 _
¢ Qu{/\+u+u VO T+ ) 4)\V}.

(4.4) M|D/M/1 queue
Consider a queue with a deterministic delayed time with mass at 1/, then we have

pa=e M

Moreover, the equation z = ®(z) is reduced to

pz — Ae”Ar=21v — o

In these three cases, it is possible to consider the optimal window size in a similar way to
case (4.1).

4. 2 Numerical Examples

We now consider numerical treatments for some systems in the previous subsection. Let y =
1.0, that is, the mean service time assumed to be denoted by unit time, and let the total hours
of operation be 7T, = 150. Moreover, assume that C, = 30, C,, = 2 and C, = 10. In each case,
we evaluate zeta, g, eta and also IW*. Thus we can observe the movement of R(A) and get the
optimal window size.

For the DIM/M/1 queue with the mean delayed time 1/y = 0.25, the values of the accep-
tance probability p,, the mean waiting times I/* and the reward function R(A) are presented in
Table 1. The graph of R(A) is given in Figure 1. We can observe here that p, is increasing and
W* is decreasing to variations of the length A = 1/A of the window. On the other hand, R(A) has
only one maximal point as shown in Figure 1. Therefore, the optimal window size A, is given
by A, = 1.3976.

Table 2 shows values of p,, W* and R(A) for the D|D/M/1 queue with the mean delayed
time 1/y = 0.25. The graph of R(A) is also given in Figure 2. It is observed that variations of
these values have the same tendencies as the above case and the optimal window size is given



Queues with Random Arrival Acceptance Windows (Osawa)

Table 1. Values of p,, W* and R(A) for the
DIM/M/1 with 1/v = 0.25

Table 2. Values of p,, W* and R(A) for the
DIM/M/1 with 1/v = 0.25

A Pa w* R(N) A Pa we R(A)
1.300 0.9945 3.2527 | 2685.455 1.200 1.00 3.6336 | 2841.601
1.340 0.9953 2.5870 | 2757.986 1.240 1.00 2.6150 | 2996.365
1.380 0.9960 2.1090 | 2784.967 1.280 1.00 1.9875 | 3049.811
1.390 0.9962 2.0106 | 2786.858 1.300 1.00 1.7597 | 3055.445
1.395 0.9962 1.9640 | 2787.222 1.301 1.00 1.7495 | 3055.464
1.3976 0.9963 1.9404 | 2787.268 1.3013 1.00 1.7464 | 3055.466
1.398 0.9963 1.9368 | 2787.267 1.302 1.00 1.7393 | 3055.461
1.400 0.9963 1.9190 | 2787.228 1.310 1.00 1.6612 | 3054.676
1.420 0.9966 1.7539 | 2784.056 1.320 1.00 1.5714 | 3051.961
1.460 0.9971 1.4824 | 2765.636 1.360 1.00 1.2800 | 3026.473
1.500 0.9975 1.2700 | 2736.088 1.400 1.00 1.0671 2985.615

Figure 1. Graph of R(A) for the DIM/M/1
with 1/v
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Figure 2. Graph of R(A) for the DIM/M/1
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Table 3. Optimal Window Size A,,, for each queue with 1/y =0.25 or 1/v = 0.5

Case Nope Paopt Wt max R(A)
DIM 1.3976 0.996 1.9404 | 2787.268

Jod DID 1.3013 1.000 1.7464 | 3055.466
MM 1.3122 0.840 1.6549 | 2319.264

MID 1.1330 0.802 1.2123 | 2602.187

DIM 1.4377 0.944 1.6300 | 2554.517

L9 DID 1.3233 1.000 1.7731 2998.623
MM 1.2141 0.708 1.2886 1946.497

MI|D 1.0471 0.620 0.5242 1971.824
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by A, = 1.3013.

For the other queues considered in the previous section, the same properties are
observed. For each queue with 1/y = 0.25and 1/v = 0.5, Table 3 shows the optimal window size
A, and the acceptance probability p,,,, the mean waiting time 11};, and the maximum of the
reward R(A). It is observed that the queue with the deterministic acceptance window may be
more efficient than one with the random acceptance window.

5. Further Problems

The research of queues with RAAW still is a step in the early stages and further development
will be needed. In particular, the following two problems seem to be important, that is, “devel-
opment of models” and “comparison with the ordinary queue”.

(I) Development of Models

Recently, Shin (2003) has analyzed the queue-length and waiting time processes in the
GIIM/M™/c queue, using the matrix geometric method. It is desired that the analysis for the
G|G/G type will be well done. Furthermore, it is important to obtain relations among the distri-
butions at opening epochs of windows, arrival epochs of customers, closing epochs of windows
and arbitrary time.

From the other point of view, there is a great variety of setting the cycle times. For
example, following cases should be considered; both lengths of open and close periods of the
window may be independently determined, or close period is deterministic, and so on. It is also
important to determine the most efficient one of these systems.

(II) Comparisons with the Ordinary Queue

To make a comparison between the queue with RAAW and the ordinary queue is an
important problem. For the purpose, we may need to study the divisibility of each process
into two or more than two independent elements, the process in the ordinary queue and other
processes. The latter processes given here can be taken with the one which shows the effect of
the windows. Therefore, applying this divisibility, it is expected that the effect of the windows is
quantitatively evaluated.

(Professor, College of Economics, Nihon University)
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