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Analysis of Stock Prices using Symmetry Models for

Multi-way Contingency Tables

Kiyotaka Iki
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1．Introduction

For analysis of contingency tables, we are interested in whether the two classificatory variables are independent

of one another. When the independent variable does not hold, we may use Pearson’s correlation coefficient to

estimate the correlation between two variables. Also, it is important to interpret the data, and to propose models that

fit the data well. Goodman (1979a) considered the uniform association model, and Agresti (1983a) considered the

linear-by-linear association model. In addition, various extended association models have been proposed, for

instance, Liu and Agresti (2005) and Ando et al. (2021).

In particular, we consider tables with the same row and column classifications. Such the table is called square

contingency tables. For square contingency tables, the independence between the row and column is unlikely to

hold because many observations fall in the main diagonal cells, which indicates that the value of the row category is

the same as the value of the column category. Therefore, for the analysis of square contingency tables, instead of

independence, we are interested in whether or not the row variable is symmetric with the column variable. As

models of symmetry, the symmetry model (Bowker, 1948), the marginal homogeneity model (Stuart, 1955), the

quasi-symmetry model (Caussinus, 1965), and the quasi-diagonal exponent symmetry model (Iki et al., 2014) have

been proposed. Further, as models of asymmetry, the conditional symmetry model (McCullagh, 1978), the

diagonals-parameter symmetry model (Goodman, 1979b), the linear diagonals-parameter symmetry model

(Agresti, 1983b) and the log-normal type symmetry model (Iki and Tomizawa, 2018) have been proposed.

In particular, the r  tables are constructed from a qualitative variable with r values observed T (≥ 3) times.

This table is called a multi-way contingency table. For the analysis of multi-way contingency tables, as models of

symmetry, the symmetry model (Bhapkar and Darroch, 1990), the marginal cumulative logistic model (Yoshimoto

et al., 2020) and the marginal continuation odds ratio model (Shinoda et al., 2020) have been proposed.

Many researchers have analyzed the stock prices of companies listed in the 1st section of the Tokyo Stock

Exchange. In this study, we are interested in representing stock price data in a contingency table. Let x, x, x and

x denote the closing stock prices at the 1st, 2nd, 3rd and 4th week in a month, respectively. In addition, x, x...

x indicate the corresponding past closing stock prices. Let α and β denote the minimum and maximum closing

stock prices in that period, respectively:
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α=min {x, ..., x}, β=max {x, ..., x}.

Let X denote

X=
1  13 α+

2
3
β<x≤β

2  23 α+
1
3
β<x≤

1
3
α+

2
3
β i=1, 2, 3, 4 .

3 α<x≤
2
3
α+

1
3
β

The variables {X} are classified into three categories (levels); (1) high, (2) middle and (3) low. The data in Table 1

are constructed from the stock prices of the 2009 companies listed in the 1st section of the Tokyo Stock Exchange

in August 2016. These data are a 3×3×3×3 (namely, the 34) contingency table. We are interested in investigating

the types of symmetry structure that exists for the data in Table 1 and propose new models of symmetry with

respect to time transition.

The new models are introduced in Section 2. Section 3 presents the goodness-of-fit test, and Section 4 provides

an example. Finally, Section 5 concludes the paper.

Table 1

The stock prices of the 2009 companies listed in the 1st section of the Tokyo Stock Exchange in August 2016. The

parenthesized values are the maximum likelihood estimates of the expected frequencies under the M3D model.

X1
X3 1 2 3

X2X4 1 2 3 1 2 3 1 2 3

1

1

2

3

152

(152.0)

3

(3.0)

1

(1.0)

29

(28.4)

1

(1.0)

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

21

(21.0)

4

(4.0)

0

(0.0)

63

(61.6)

15

(14.7)

1

(1.0)

3

(2.9)

5

(4.9)

0

(0.0)

1

(1.0)

1

(1.0)

0

(0.0)

2

(2.0)

4

(3.9)

1

(1.0)

2

(2.0)

15

(14.7)

7

(6.8)

2

1

2

3

141

(144.2)

39

(39.9)

0

(0.0)

35

(35.0)

14

(14.0)

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

25

(25.6)

36

(36.8)

2

(2.0)

84

(84.0)

220

(220.0)

3

(3.0)

8

(7.8)

41

(40.1)

2

(2.0)

0

(0.0)

1

(1.0)

0

(0.0)

4

(4.0)

40

(40.0)

6

(6.0)

11

(10.8)

169

(165.4)

64

(62.6)

3

1

2

3

13

(13.3)

11

(11.2)

3

(3.1)

1

(1.0)

7

(7.2)

0

(0.0)

0

(0.0)

0

(0.0)

0

(0.0)

2

(2.0)

9

(9.2)

3

(3.1)

9

(9.2)

61

(62.4)

7

(7.2)

3

(3.0)

29

(29.0)

11

(11.0)

0

(0.0)

2

(2.0)

2

(2.0)

1

(1.0)

24

(24.5)

25

(25.6)

2

(2.0)

150

(150.0)

358

(358.0)
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2．Models

In this section, for a 3×3×3×3 contingency table with ordered categories, we propose seven types of models

for symmetry.

Let X, X, X and X denote the first, second, third, and fourth variables, respectively, and have time ordering.

Also, let Pr (X=i, X= j , X=k, X=l)= (1≤i, j , k, l≤3). We propose a model defined by

= (i≤ j≤k≤l; i<l).

This indicates that the probability of an observation falling in the (i, j, k, l)th cell is equal to the probability of the

observation falling in the (l, k, j, i)th cell, under the condition that i, j, k and l are increase monotonically. This

describes a structure of symmetry of the probability with respect to time transition only in the cell where the value

of the category increases or decreases monotonically. We refer to this model as the M1 model.

Next, we propose a model defined by

∑∑∑∑
≤≤≤



=∑∑∑∑
≥≥≥



 (t=1, 2).

This indicates that the probability of the difference between the value of the fourth variable and the first variable,

namely l−i, is t on the condition that i, j, k and l are increase monotonically, and is equal to the probability of the

difference between the values of the first and fourth variables, namely i−l, being t (t=1, 2). We refer to this

model as the M2 model, and note that the M1 model implies the M2 model.

Moreover, we propose a model defined by

∑∑∑∑
≤≤≤



=∑∑∑∑
≥≥≥



.

This indicates that the probability of the difference between the value of the fourth variable and the first variable is

positive when i, j, k and l are increase monotonically, and is equal to the probability of the difference between the

value of the fourth variable and the first variable being negative. We refer to this model as the M3 model. The M2

model implies the M3 model.

We further propose a model defined by

= (i<l).

This indicates that the probability that an observation falling in the (i, j , k, l)th cell is equal to the probability of the

observation falling in the (l, k, j , i) th cell on the condition that the difference between l−i is positive. This

describes a structure of symmetry of the probability with respect to the time transition only in the cell where the

difference between l−i is positive. We refer to this model as the M1D model. The M1D model implies the M1

model.

Next, we propose a model defined by

∑∑∑∑


=∑∑∑∑


 (t=1, 2).

This indicates that the probability of the difference between the value of the fourth variable and the first variable is

t, and is equal to the probability of the difference between the values of the first and fourth variables being
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t (t = 1, 2). We refer to this model as the M2D model. It should be noted that the M1D model implies the M2D

model.

Moreover, we propose a model defined by

∑∑∑∑


=∑∑∑∑


.

This indicates that the probability of the difference between the value of the fourth variable and the first variable is

positive, and is equal to the probability of the difference between the value of the fourth variable and the first

variable being negative. We refer to this model as the M3D model. It should be noted that the M2D model implies

the M3D model.

Finally,

= (1≤i, j , k, l≤3).

This indicates that the probability of an observation falling in the (i, j , k, l)th cell is equal to the probability of the

observation falling in the (l, k, j , i)th cell. This describes the structure of symmetry of the probability with respect

to the time transition. We refer to this model as the M1DD model. We note that the M1DD model implies the M1D

model.

Figure 1 shows the relationships among the models. In the figure, A→B indicates that model A implies model

B.

3．Goodness-of-fit Test

For a 3×3×3×3 contingency table, let n denote the observed frequency in the (i, j , k, l)th cell of the table,

where n=∑∑∑∑ n and let m denote the corresponding expected frequency (1≤i, j , k, l≤3) . We

assume that the observed frequencies have a multinomial distribution. The maximum likelihood estimates of the

expected frequencies under each model are expressed in closed-forms. Each model can be tested for the goodness-

of-fit using, for example, the likelihood ratio chi-squared statistic (denoted by G) with the corresponding degrees

of freedom. The test statistic G for model M is given by

G(M )=2∑




∑




∑




∑




nlog  n

m̂ ,
where m̂ is the maximum likelihood estimate of the expected frequency m under model M . Under model M ,

these statistics have an asymptotic central chi-squared distribution with corresponding degrees of freedom. The

Figure 1: Relationships among models.
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number of degrees of freedom for the M1DD, M1D, M1, M2D, M2, M3D and M3 are 36, 27, 12, 2, 2, 1 and 1,

respectively.

Akaike (1974) information criterion (AIC) is used to choose the preferable model among different models that

include non-nested models. For details see Konishi and Kitagawa (2008). Because only the difference between

AIC’s is required when two models are compared, it is possible to ignore a common constant of AIC. We may use a

modified AIC defined by

AIC=G−2(number of df).

Thus, for the given data, the model with the minimum AIC is the preferable model. This criterion will be used in

the next section.

4．An Example

We consider the data in Table 1 again. Table 2 shows that the M1DD, M1D and M1 models fit the data poorly,

whereas the M2D, M2, M3D and M3 models fit the data well. Because these models include non-nested models, we

useAIC to choose the preferable model. Because the M3D model has a minimumAIC value, the M3D model is

the most preferred model.

Under the M3D model, the probability that closing stock prices in the 1st week in August 2016 is better than that

in the 4th week is equal to the probability that closing stock prices in the 1st week in August 2016 is worse than that

in the 4th week. Since∑∑∑∑ 
m̂=433.5, it is evident that the stock price of 21% (= 433.5/2009) of the

companies listed in the 1st section of the Tokyo Stock Exchange rose during that period. In addition, because

∑∑∑∑ 
m̂=433.5, it can be observed that the stock price of 21% of the companies fell during the same

period. Therefore, the percentage of companies whose stock prices have fallen and the percentage of companies

whose stock prices have risen are considered to be approximately the same. It can also be seen that the stock price

of 57% (=(2009−867)/2009) of the companies does not fluctuate during this period.

Table 2

Values of the likelihood ratio chi-squared statistic for the models applied

to Table 1.

Applied

models

Degrees of

freedom

Likelihood ratio

chi-square statistic

AIC
+

M1DD

M1D

M1

M2D

M2

M3D

M3

36

27

12

2

2

1

1

693.4
*

428.1
*

337.6
*

3.5

8.6

0.4

5.2

621.4

374.1

313.6

-0.5

4.6

-1.6(min)

3.2

* significant at the 0.05 level.

(min) means a minimum AIC
+



027-034_日大紀要52号_B生亀_SK.smd  Page 6 22/03/09 09:27  v4.00

経済科学研究所 紀要 第 52号（2022）

― 32 ―

5．Concluding Remarks

In Section 1, we define α and β as a function of the values of x, ..., x, which represent 13 weeks (about 3

months) of the stock prices. However, the same could be applied to a different number of weeks or months as well.

The models proposed in this paper may be applicable not only to stock price data but also to data from other

fields.
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