
1.  Introduction

This study focuses on the trend characteristics of the Nikkei Stock Average (Nikkei 225) using the Markov-
Switching Autoregressive Moving Average GARCH (MS-ARMA-GARCH) model under the low interest rate 
environment in Japan. The Bank of Japanʼs monetary policy has been as follows: zero interest rate policy from 
February 1999 to August 2000, February 2001 to July 2006, and October 2010 to April 2013; quantitative easing 
policy from March 2001 to March 2006; inflation targeting policy from January 2013 to the present; and 
quantitative and qualitative monetary easing policy from April 2013 to the present. In this study, the period of low 
interest rates is from Friday, February 12, 1999, when the zero interest rate policy was implemented, to Saturday, 
April 8, 2023, when Bank of Japan Governor Kuroda stepped down. 

If trends do exist, it should be possible to observe upward and downward trends – so-called bull and bear 
markets – using a time series model. One common trend analysis model is the Markov-switching model. When 
using the Markov-switching model for trend analysis, market trends are first separated into the two regimes: bull 
and bear. The mean of the change rate of stock prices has two states, negative or positive. If the positive value 
continues, this indicates an upward trend (bull market), and if the negative value continues, this indicates a 
downward trend (bear market). The assumption is that these two states follow the transition of a Markov process. 
In general, a model of changing volatility1） is used for time series analysis of asset prices. Studies using the 
Markov-switching model, a model of changing volatility, include Hamilton and Susmel (1994) and Cai (1994), 
which use the Markov-switching ARCH (Autoregressive conditional heteroscedasticity) model, and Gray (1996), 
Klaassen (2002), and Haas et al. (2004), which use the Markov-switching GARCH (Generalized ARCH) model 
(hereinafter, the MS-GARCH model) 2）. Henneke et al. (2011) conducted Bayesian estimation with the Markov 
chain Monte Carlo (MCMC) method for the estimation of the MS-ARMA-GARCH model. In the Japanese stock 
market, Satoyoshi (2004) uses the Markov-switching model on the TOPIX, and Satoyoshi and Mitsui (2011b), 
Satoyoshi and Mitsui (2012), and Mitsui (2015) use the same on the Nikkei Stock Average.

In recent years, the stock market has seen violent fluctuations due to hedge funds and future-driven market 
prices by institutional investors. Accordingly, this paper analyzes bull and bear markets of the Nikkei Stock 
Average rather than stock price indexes such as the Nikkei Stock Average. An empirical analysis was conducted on 
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the daily Nikkei Stock Averages from February 12, 1999, to April 7, 2023, using the MS-ARMA-GARCH  model. 
The empirical analysis showed statistically significant bull and bear regimes in the Nikkei Stock Average. In other 
words, we were able to identify bull markets, with high expected returns and low volatility, and bear markets, with 
low expected returns and high volatility. It was firmly established that the MS-ARMA-GARH model is valid 
models for analyzing bull and bear markets in the Nikkei Stock Average.

The model was estimated using the maximum likelihood method. During the low interest rate period under 
study, 69% (or 4,087) of the days were in a bull market, with high expected returns and low volatility, while 31% 
(or 1,832) of the days were in a bear market, with low expected returns and high volatility.  The average duration 
of the bull phase was 8.982 days, while that of the bear phase was approximately 4.026 days. It is clear that the 
MS-ARMA-GARCH model was effective in analyzing the bull and bear markets of the Nikkei Stock Average. It 
was also found that Nikkei Stock Average exhibited a long-term bull market trend after the financial crisis in 2008, 
the Great East Japan Earthquake in March 2011, and the big crash at the time of the Corona Shock in February 2020.

The remainder of the paper is organized as follows: Section 2 explains the MS-ARMA-GARCH model and the 
methods used to estimate the analytical model. Section 3 describes the Nikkei Stock Average data and discusses 
the estimation results. Section 4 concludes the discussion and identifies future issues.

2.  Methodology

2.1  MS-ARMA-GARCH Model
We begin this section by briefly explaining the MS-ARMA-GARCH model, which is based on the MS-GARCH 
model developed in Gray (1996), Klaassen (2002), and Haas et al. (2004). Let Rt be the rate of return on the 
Nikkei Stock Average at time t. If Pt is the level of the Nikkei Stock Average at time t, the rate of return of the 
Nikkei Stock Average, Rt, can be expressed as

 Rt = (lnPt − lnPt−1)× 100.  (2.1)

In the MS-ARMA-GARCH model, the processes for determining Rt and volatility ¾t
2  can be shown as follows:

 Rt = µ(St) +
r∑

i=1

ϕi(St)Rt−i + ϵ(St) +
m∑
j=1

ψj(St)ϵt−j(St),  (2.2)

 
σ2
t (St) = ω(St) +

q∑
i=1

αi(St)ϵ
2
t−i(St) +

p∑
j=1

βj(St)σ
2
t−j(St),  (2.3)

 ϵt−j−1(St−j) = E[ϵt−j−1(St−j−1)|St−j , It−j−1],  (2.4)

 σt−j−1(St−j) = E[ϵt−j−1(St−j−1)|St−j , It−j−1]. (2.5)

Here, ¹(St) is a constant term, and there is no autocorrelation in the returns. E[¢|¢] is the conditional expected 
value. It¡ j¡1 is the information set It¡ j¡1= fRt¡1, Rt¡2, ¢ ¢ ¢ g  up until t¡ j¡1. It is assumed that the constant 
term ¹, ! and volatility ¾t

2  follow state variable St and switch simultaneously. To ensure nonnegativity of 
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volatility, it is assumed that !(St), ®(St), ¯(St)>0. The order selection of ARMA and GARCH are ARMA(1,1)-
GARCH(1,1); therefore, we will focus on the MS-ARMA(1,1)-GARCH(1,1) model. 

 Rt = µ(St) + ϕ(St)Rt−1 + ϵ(St) + ψ(St)ϵt−1(St),  (2.6)

 ϵt(St) = σt(St)zt, zt ∼ i.i.d., E[zt] = 0, V ar[zt] = 1,  (2.7)

 σ2
t (St) = ω(St) + α(St)ϵ

2
t−1(St) + β(St)σ

2
t−1(St),  (2.8)

 ϵt−1(St) = E[ϵt−1(St−1)|St, It−1],  (2.9)

 σt−1(St) = E[ϵt−1(St−1)|St, It−1]. (2.10)

In the above, i. i. d. indicates independent and identically distributed values. zt is an error term, E[¢] is the 
expected value, and Var[¢] is the variance. In the Markov-switching model, the state variable St that is not 
observed follows a Markov process and can be defined with the following transition probability:

 pi|j = Pr[St+1 = i|St = j], i, j = 0, 1. (2.11)

Pr[St+1= i|St= j] is the probability that the state transitions from j to i. However, the probability that this termʼs 
state j transitions to next termʼs state i is dependent only on this term, as shown belows3）:

 Pr[St+1 = i|St = j, St−1, St−2,···] = pi|j = Pr[St+1 = i|St = j].  (2.12)

Here, the following holds:

 
1∑

i=0

pi|j = 1, j = 0, 1.  (2.13)

Then the transition matrix P of St is

 P =

(
p0|0 p0|1
p1|0 p1|1

)
.  (2.14)

Here, 0∙p0|0, p1|1∙1. 
This study considers the condition St=0 as indicative of a bull market and St=1 as indicative of a bear 

market4）. Therefore, p0|1 is the transition probability from bull to bear market, and p1|0 is the transition probability 
from bear to bull market. Moreover, p0|0 and p1|1 represent the transition probabilities of a maintained bull market 
and maintained bear market, respectively. The restriction ¹(0)>¹(1) exists5）. In our empirical analysis, the 
distribution of the error term is assumed to follow the standard normal distribution as shown below6）.

 zt ∼ i.i.d.N (0, 1) . (2.15)
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Here, the estimated parameters are £= f¹(0), ¹(1), Á(0), Á(1), Ã(0), Ã(1), !(0), !(1), ®(0), ®(1), ¯(0), ¯(1), 
p0|0, p1|1g . In this study, parameters are estimated with the maximum likelihood method for simplicity. 

2.2  Estimation Method 
Let L(£) denote the likelihood function. This likelihood function can be determined as follows:

 

L(Θ) = f (R1, R2, · · · , RT ) =
T∏
t=1

f (Rt|It−1; Θ)

=
T∏
t=1

1∑
j=0

(Rt|St = j, It−1) Pr [St = j, |It−1] .
 (2.16)

Then the log-likelihood function ln L can be expressed as

 

lnL =
T∑
t=1

ln




1∑
j=0

(Rt|St = j, It−1; Θ)Pr [St = j, |It−1; Θ]




=

T∑
t=1

ln
{
i′
(
ηt ⊙ ξ̂t|t−1

)}
,  (2.17)

where

 
i =

(
1
1

)
, ηt =

(
f(Rt|St = 0, It−1; Θ)
f(Rt|St = 1, It−1; Θ)

)
, ξ̂t|t−1 =

(
Pr[St = 0, |It−1; Θ]
Pr[St = 1, |It−1; Θ]

)
.
 

Here, the symbol ¯ denotes element-by-element multiplication. ξ̂t|t−1 in equation (2.17) is obtained with the 
filtering method proposed by Hamilton (1989) (Hamilton Filter)7）. We can express 

 ξ̂t|t−1 = (P⊗Q) ξ̂t−1|t−1,  (2.18)

 ξ̂t|t =

(
ηt ⊙ ξ̂t|t−1

)

i′
(
ηt ⊙ ξ̂t|t−1

) .  (2.19)

By repeating the above equations (2.18) and (2.19) alternately, ξ̂t|t−1 is calculated for t=1, 2, . . . , T and is 
substituted into equation (2.17)8）.

For estimation of the parameters, maximum likelihood estimation is conducted using the statistical and time 
series analysis software PcGive 9）.

3  Empirical Results

3.1  Data
Data for the Nikkei Stock Average were obtained from Bloomberg. The data period is from February 12, 1999, 

to April 7, 2023 (see Figure 1)10）. The rate of return was calculated as the percentage change (%) in the closing 
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price of each index (see Figure 2). The sample period is from February 15, 1999, to April 7, 2023, which produced 
a sample size of 5,920. The mean, standard deviation, skewness, excess kurtosis, maximum, minimum, and 
normality test statistics11） for the data are summarized in Table 1. The negative skewness value here indicates that 
the distribution of the Nikkei Stock Average is skewed to the left. Since excess kurtosis of the rate of return of the 
Nikkei Stock Average exceeds 0 and the normality test was significant, it is obvious that the distribution of the rate 
of return of the Nikkei Stock Average has thicker tails than the normal distribution. The histogram and density 
function of the rate of return are shown in Figure 3. In this figure, the density and normal distributions are 
superimposed. According to Table 1, N (s =  1.458) follows the normal distribution N (0.011, 1.458) with a mean 
of 0.011 and a variance of 1.458 2. Figure 4 depicts the autocorrelation of |Rt |. From Figure 4, we can see that the 
decay of autocorrelation of |Rt | is very slow. This suggests that the series of |Rt | has a long-term memory.

Figure 1:  Daily closing prices on the Nikkei Stock Average (2/12/1999 – 4/7/2023)
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Table 1:  Summary statistics for daily rates of return for the Nikkei Stock Average
February 15, 1999 – April 7, 2023, No. of Obs. 5,920

Mean Std. Dev. Skewness Exc. Kurtosis Max. Min. Normality Test

0.011 1.458 ¡0.349* 6.088* 13.235 ¡12.111  2890.2**

(0.019) (0.032) (0.064)  

(i)  The numbers in parentheses indicate the standard errors. Let T be the sample size and ¾^  be the standard deviation; then the standard 
errors of the mean, skewness, and kurtosis are, respectively, σ̂/

√
T ,

√
6/T ,

√
24/T .

(ii) * indicates that the result is significant at the significance level of 5%.
(iii) ** indicates that the result is significant at the significance level of 1%.
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Figure 2:  Daily closing prices on the Nikkei Stock Average (2/12/1999 – 4/7/2023)
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Figure 3:  Histogram of the Nikkei Stock Average returns and its normal approximation
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3.2  Estimation Results
Table 2 shows the estimation results of the Nikkei Stock Average. Let us consider the MS-ARMA(1,1)-

GARCH(1,1) model. The estimated values of ¹(0) and ¹(1) are 0.709 and ¡0.279, respectively, and are 
statistically significant results. ¹(0), which indicates a bull market, is a positive value and ¹(1), which indicates a 
bear market, is a negative value. This confirms that when the state variable St=0, the Nikkei Stock Average is in a 
bull market, and when St=1, the Nikkei Stock Average is in a bear market. The estimated values of !(0) and !(1) 
are 0.018 and 0.279, respectively, and are statistically significant results. Because  !(0)<!(1), we can see that a 
bear market has a higher volatility value than a bull market. The estimated value of the parameter showing a 
clustering of volatility shock is ®(0)+¯(0)=0.982, ®(1)+¯(1)=0.992, demonstrating that the clustering of shock 
is higher in both bear and bull markets. The estimated values of transition probabilities p0|0 and p1|1 are 0.852 and 
0.795, respectively, and are statistically significant results. p0|0 is extremely close to 1, implying that if there is a 
switch to a bull market, that state will be maintained for a relatively long period. Because p0|0>p1|1, we can see 
that a bear market does not last as long as a bull market. Also, the mean ¹ and volatility ¾ switch simultaneously 
following the state variable St, so when it switches to a low volatility state it remains in that state for a long period, 
whereas when it switches to a high volatility state it does not stay there for long. Q(20) and Q2(20) represent the 
normalization residuals (²^¾^¡1) up to 20, and the Q-statistic of the squared Ljung-Box test. It follows the asymptotic 
degree of freedom 20 with Â2 distribution. Statistically significant estimation values were not produced with the 
MS-ARMA(1,1)-GARCH(1,1) model. Regarding Q(20) and Q2(20), a null hypothesis cannot be rejected with a 

Figure 4:  ACF for the Nikkei Stock Average |Rt |
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10% significance level. Therefore, we can see that the MS-ARMA(1,1)-GARCH(1,1) model captures the 
autocorrelation of Nikkei Stock Average volatility.

3.3  Discussion
Figure 5 shows the periods of the Nikkei Stock Average when St=0 (bull market). As noted earlier, 4,087 (or 
69.05%) of the total days in the sample were in a bull market state. The average duration of the bull market state 
was just under 9 days. Tables 3 and 4 show the summary statistics for the number of days in bull and bear markets, 
respectively. Overall, 1,832 (or 30.95%) of the total days in the sample were in a bear market state. The average 
duration of the bear market state was slightly more than 4 days. These results indicate that it takes time for stock 
prices to rise but that they fall rather quickly. Table 5 shows the top 10 long-running bull trends, and Table 6 shows 
the top 10 long-running bear trends. The black lines in Figures 5 and 6 indicate the smoothed probabilities of bull 
and bear markets. The shaded areas in Figure 5 show bull markets; in Figure 6, they show bear markets.

The smoothed probabilities can be computed using the backward iteration suggested by Kim (1993):

 ξt|T = ξt|t ⊙ {P ′[ξt+1|T (P ⊘ ξt|t)]}, (3.1)
 

ξt|t =
diag(ηt)

ξ′t|t−1ηt

, ξt+1|t = Pξt|t,
 

(3.2)

where ® is used for element-by-element division and diag(´ t) creates a diagonal matrix with ´ t on the diagonal.

Table 2:  Estimation results for the MS-ARMA(1,1)-GARCH(1,1) model

Rt = µ(St) + ϕ(St)Rt−1 + ϵ(St) + ψ(St)ϵt−1(St),

ϵt(St) = σt(St)zt, zt ∼ i.i.d.N (0, 1)

σ2
t (St) = ω(St) + α(St)ϵ

2
t−1(St) + β(St)σ

2
t−1(St).

P =

(
p0|0 p0|1
p1|0 p1|1

)
.

¹(0) ¹(1) Á(0) Á(1) Ã(0) Ã(1)

Estimates 0.709* ¡0.279* 0.809* 0.680* ¡0.843* ¡0.615* 

Standard Errors (0.127) (0.111) (0.044) (0.052) (0.033) (0.057)

!(0) !(1) ®(0) ®(1) ¯(0) ¯(1) p0|0 p1|1

Estimates 0.018 0.279* 0.016* 0.138* 0.966* 0.854* 0.852* 0.795* 

Standard Errors (0.043) (0.049) (0.005) (0.021) (0.008) (0.022) (0.035) (0.066)

ln L AIC SBIC Q(20) Q2(20)

Estimates ¡9790.33 3.313 3.329 15.149 39.741 
* denotes statistical significance at the 5% level.
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4  Conclusions

In this study, an MS-ARMA(1,1)-GARCH(1,1) model was used to conduct a trend analysis of the Nikkei Stock 
Average under the low interest rate environment in Japan. During the low interest rate period under study, 69% of 
the days were in a bull market with high expected returns and low volatility, while 31% were in a bear market with 
low expected returns and high volatility. The average duration of the bull phase was approximately 9 days, while 
that of the bear phase was approximately 4 days. Results of the study make clear that the MS-ARMA-GARCH 
model is effective in analyzing the bull and bear markets of the Nikkei Stock Average. It was also found that the 
trend of the   Nikkei Stock Average has been a long-term bull market after the financial crisis in 2008, the Great 
East Japan Earthquake in March 2011, and the big crash at the time of the Corona Shock in February 2020 12）.

Future issues to be addressed include conducting an analysis using the MS-ARMA-EGARCH model. While this 
study modeled volatility changes with the GARCH model, Henry (2009) proposed the MS-EGARCH model 13）, 
which incorporates the EGARCH (Exponential GARCH) model formulated by Nelson (1991). In addition, Maheu  
et al. (2012) offers a four-state Markov-switching model that identifies four trends – bull market, bear market, bear 
market rally, and bear market correction14）. It is important to analyze trends in detail. Because this study uses daily 

Table 5:  Top 10 (bull trend)
Period days

05/09/2014 – 08/04/2014 61

08/03/2020 – 10/29/2020 61

12/10/2004 – 02/22/2005 48

06/02/2017 – 08/08/2017 47

05/24/2011 – 07/27/2011 46

04/03/2020 – 06/10/2020 45

09/30/2015 – 12/03/2015 44

03/16/2011 – 05/20/2011 43

06/10/2005 – 08/03/2005 38

03/27/2018 – 05/22/2018 38

Table 6:  Top 10 (bear trend)
Period days

09/30/2008 – 11/06/2008 26

04/16/2010 – 05/27/2010 26

02/25/2020 – 03/27/2020 23

09/08/2005 – 10/07/2005 20

06/04/2002 – 06/27/2002 18

11/29/2005 – 12/22/2005 18

01/04/2008 – 01/29/2008 17

05/23/2013 – 06/14/2013 17

02/22/2011 – 03/15/2011 16

12/04/2018 – 12/26/2018 16

10/30/2020 – 11/24/2020 16

Table 4:  Summary statistics for regime 1 (bear market)
Total: 1832 days (30.95%) with average duration of 4.03 days. No. of Obs. 455

Mean Std. Dev. Skewness Exc. Kurtosis Max. Min. Median

4.026 3.977 2.218 6.251 26.000 1.000 3.000

Table 3:  Summary statistics for regime 0 (bull market)
Total: 4087 days (69.05%) with average duration of 8.98 days. No. of Obs. 455

Mean Std. Dev. Skewness Exc. Kurtosis Max. Min. Median

8.982 9.000 2.375 7.544 61.000 1.000 6.000
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Figure 5:  The smoothed probability of bull regime for the Nikkei Stock Average
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Figure 6:  The smoothed probability of bear regime for the Nikkei Stock Average
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data, the bear market state turned out to be quite long in the empirical analysis. Using weekly or monthly data will 
likely eliminate this problem. Finally, Mitsui and Totsuka (2022) and Totsuka and Mitsui (2022), for example, 
conduct empirical studies using Bayesian estimation methods based on Hamiltonian Monte Carlo.

Notes
1） Volatility is defined based on the variance or standard deviation of the return on asset, and is used as the index of 

the risk of risky assets in finance theory.

2） Engle (1982) proposed the ARCH model that formulates the volatility at each time as the linear function of the 

square of the past unexpected shock. In addition, Bollerslev (1986) added the past volatility values to the 

explanatory variables, and extended the GARCH model to a more general model.

3） This can also be expressed as: pji=Pr[St+1= i|St= j].
4） In equations (2.4)–(2.5), when St=0, indicating a bull market, the following equations are obtained:

Rt = µ(0) + ϕ(0)Rt−1 + ϵ(0) + ψ(0)ϵt−1(0),

σ2
t (0) = ω(0) + α(0)ϵ2t−1(0) + β(0)σ2

t−1(0).

 Also, when St=1, indicating a bear market, the following equation is obtained:

Rt = µ(1) + ϕ(1)Rt−1 + ϵ(1) + ψ(1)ϵt−1(1),

σ2
t (1) = ω(1) + α(1)ϵ2t−1(1) + β(1)σ2

t−1(1).

5） ¹(0)>0, ¹(1)<0 does not always hold depending on the asset data.

6） It is known that the distribution of stock returns follows a distribution with a thicker tail compared to a normal 

distribution. Therefore, it is necessary to analyze the error term using fat-tailed distributions, such as the 

t-distribution, skewed t distribution, generalized hyperbolic skew t distribution, GED (Generalized Error 

Distribution), and skewed GED (SGED).

7） For details, refer to Kim and Nelson (1999).

8） For details, refer to Satoyoshi and Mitsui (2011a).

9） For further information on using PcGive for Markov-switching estimation, refer to Doornik and Hendry (2013).

10） The figures were created by PcGive (statistical and time series analysis software).

11） In this paper, we use the method of Jarque and Bera (1987), which employs skewness and kurtosis in testing the 

normality of the profitability distribution. The Jarque - Bera test statistic JB is

JB =
ˆskew

2
T

6
+

( ˆkurt− 3)2T

24
∼ χ2(2)

 where ˆskew  and ˆkurt are skewness and kurtosis calculated from the data, respectively, and T is the number of 

samples. For a normal distribution, JB is JB=0, and the value of JB increases as the distribution deviates from 

the normal distribution. For details, see Jarque and Bera (1987).

12） For verification of the BOJʼs ETF purchases, see Harada and Okimoto (2019).

13） Satoyoshi and Mitsui (2011a), Mitsui (2012,2013), and Satoyoshi and Mitsui (2016) conducted bull and bear 
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