
1.  Introduction

Many results concerning the qualitative properties of limit cycles of a classical Liénard equation:

ẍ+ f(x)ẋ+ x = 0  (1)

or the generalized Liénard equation:

ẍ+ f(x)ẋ+ g(x) = 0. (2)

have been demonstrated in [LOP], [H2], [HVZ], [SV], [M1], [Zh], among others. These equations emerge in 
various scientific phenomena and have been extensively disseminated by mathematicians, physicists, economists 
and other researchers. The topics, as seen in the famous Hilbert 23rd problem, continue to be an area of active 
research.

Equation (1), known as the “Van der Pol equation” is derived from the oscillator circuit appears in technological 
phenomena. Equation (2) plays an important role in understanding the qualitative behavior of “natural 
phenomena”. For instance, it is applied in various fields, such as the “Predator–Prey system” in biology, the 
“Hodgkin-Huxley system” in neurophysiology, the “Bogdanov-Takens system” which is essential to the 
development of bifurcation theory in mathematics, and the “Business cycle model in the Keynesian theory” in 
economic dynamics, among others.

In this study, we provide new tools for establishing criteria for the unique existence or the non-existence of 
periodic motions in the models described by the Liénard system (4), (6) or (9). Consequently, we assert that these 
results will contribute to understanding “economic phenomena” in the future.

T. Yasui [Ya] and T. Maruyama [Mt] have explained the important roles of equation (2) as derived from business 
cycle models. T. Owase [Ow] has historically introduced the mathematical methods for this equation. Recently, M. 
Galeotti–F. Gori [GG] and H. Murakami [M1]–[M4] have addressed the uniqueness and existence of limit cycles 
for equation (2) using the classical tools provided by Levinson–Smith [LS:1942] and Xiao–Zhang [XZ:2003]. Our 
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methods differ from theirs, offering a new direction, and we expect these approaches to influence future research.
In 1954, a tool for establishing the existence and uniqueness of the limit cycle for equation (1) was provided 

given by J. L. Massera [Ma]. This tool is based on the idea that the limit cycle is star-like (for the definition see 
[Ma] or [Zh]) and stable. It remains an important tool for equation (1) as demonstrated in the famous “Van der Pol 
equation” (see Example 1). However, Massera's method cannot be applied to the generalized equation (2) of (1). 
Although the result of [Ci] is a generalization of Masseraʼs theorem, it only covers the specific case of g(x) = x. 
Our aim in Section 2 is to provide a generalization of Proposition 1 for equation (2) and demonstrate its 
applicability several examples. 

The improved Massera’method introduced in Section 2 is a significant tool and a powerfull method, as 
demonstrated in Examples 1–3. However, conditions (C3) or (C6) are quite stringent when used to determine the 
unique existence of limit cycles for equations (1) or (2). For instance, Theorem 2 cannot be applied to equations 
with f(x) = 3x2¡4x¡3 or g(x) = x2n¡1(n2N) in system (3). Our aim in Section 3 is to establish the uniqueness 
of the limit cycles for system (4) or (6) without replying on Massera’s conditions (C3) or (C6), which are 
equivalent to equation (2). Moreover, an example proposed by Duff-Levinson (introduced from a mathematical 
perspective) is discussed and the power of our tools is comfirmed. See [DL], [H1], or [H4].

In the final, we consider the non-existence of limit cycles for the generalized Liénard system (9). This aspect has 
not been studied in the context of business models. Establishing criteria for the non-existence of periodic motions 
in economic models is important. The effectiveness of these criteria is discussed with reference to the Bogdanov–
Takens system ([H5], [MKKT], [P], [RW]) and the FitzHugh-Nagumo system ([Fi], [H6], [HH], [NAY], [Su]).

2.  Tool 1 (Improved Masseraʼs method)†

Massera’s result [Ma] is as follows.
Proposition 1. Assume that the conditions 

(C1) f(x) is a continuous function,
(C2) there exist a and b (a<0<b) such that f(x)<0 (a<x<b) 
　and f(x)>0(x ∙  a, x ¸  b),

(C3) f(x) is nondecreasing as jx j  increases
are satisfied. Then, equation (1) has a unique limit cycle.

As an important example of Proposition 1, we can show the following
Example 1. Consider equation (1) with f(x) = ² (x2¡1). This is the well-known as the “Van der Pol equation.” 

Note that condition (C3) is satisfied for this equation. Thus, the system has a unique limit cycle for all ²>0.
To generalize the above proposition, we assume the following conditions

(C4) f(x) and g(x) are locally Lipschitz continuous functions, and g(x)=x>0,
(C5) g(x) = xh(x), where h(x)>0 (x=/ 0).

Under the above conditions (C2) and (C4), the uniqueness of solutions of equation (2) for initial value problems 

†  This result is based on the paper: M. Hayashi, An improvement of Massera’s theorem for the Liénard equation, Applied 
Mathematical Sciences, 18 (2024), 179–184. https://doi.org/10.12988/ams.2024.918683.
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is guaranteed, and the only equilibrium point (0, 0) is unstable (for instance see [Le] or [Zh]).

Let F (x) =

∫ x

0

f(ξ)dξ and G(x) =

∫ x

0

g(ξ)dξ. Our main result is the following

Theorem 2. Assume that the conditions (C2), (C4), (C5), and additionally

(C6) f(x) and h(x) are nondecreasing as jx j  increases,
(C7) lim sup

x→±∞
[G(x)± F (x)] = +∞

are satisfied. Then, equation (2) has a unique limit cycle, which is stable and hyperbolic. 
Note that the system

ẋ = y, ẏ = −f(x)y − g(x) (3)
or

ẋ = y − F (x), ẏ = −g(x) (4)

is equivalent to equation (2). This is known as the Liénard system. Notably, the existence and non-existence of 
limit cycles in systems (3) or (4) coincide with those in equation (2).

Assume that there exist ® and ¯ such that F(®) = F(¯) = F(0) = 0 and ®<0<¯, as given by condition (C2). 
Note that if such ® and ¯ do not exist, then system (4) has no limit cycles.

Let G(®) ¸  G(¯) without loss of generality, and let Ω be the domain surrounded by the closed plane curve 
(1/2)y2 +G(x) = G(¯). From the fact (see [H1]) that the limit cycle of system (4) cannot exist within Ω due to 
conditions (C2) and (C4), we have the following

Corollary 3. Under the conditions of Theorem 2, a limit cycle of system (4) must exist outside Ω and intersect 
both lines x = ¯ ¤ and x = ¯ , where ¯ ¤ is a negative number such that G(¯) = G(¯ ¤).

2.1  Proof
We prove Theorem 2 by the analogy to the discussion in [Ma]. The outline of the proof consists of three steps.
• Existence of a closed orbit ¡.
Under the conditions (C2), (C4), and (C7), it is known that system (4) has at least one closed orbit. For instance 

see [CV] or [Gr]. Thus, a closed orbit ¡ of system (3) exists under these conditions. 
• ¡ is star-like.
By transforming system (4) to polar coordinates x = ½cosµ and y = ½ sinµ, the system is converted to the 

differential system with respect to ½ and µ :

{
ρ̇ = ρ cos θ sin θ{1− h(ρ cos θ)} − ρ sin2 θf(ρ cos θ)

θ̇ = − cos2 θh(ρ cos θ)− sin2 θ − sin θ cos θf(ρ cos θ).

Assume that ¡ is not star-like. Then there exists a half-ray µ = µ0 which intersects ¡ at three points P1, P2, and P3 
on the xy-plane. Thus, µ̇ must change sign twice at these points as ½ increases. Given the monotonicity of f(x) and 
h(x), this is impossible. Therefore, ¡ is star-like.

• ¡ is unique.
In system (4) we consider  a closed orbit ¡ (which is star-like) and make the transformation (x, y)! (kx, ky) 
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for k2R+. Let ¡ (kx, ky) = ¡k (x, y), and we obtain a family of simple closed curves ¡k on the plane such that 
¡k¾¡ for k>1, ¡k½¡ for k<1 on both sides of ¡ and ¡1 = ¡. 

Take a point P(x, y) on ¡ and consider its tangent vector T(x, y). This is given by the slope, which in this case is

T (x, y) = −f(x)− g(x)

y
= −f(x)− xh(x)

y
.

From a similar transformation, the tangent vector T̃ (x, y) at the point Pk(kx, ky) on the closed curve ¡k is parallel 
to the one at the point P. The slope of system (4) at this point is

T (kx, ky) = −f(kx)− g(kx)

ky
= −f(kx)− xh(kx)

y
.

From the monotonicity assumpitions on f(x) and h(x), the slope at the point Pk is given by

T̃ (Pk) = −f(kx)− xh(kx)

y
≤ −f(x)− xh(x)

y
= T (Pk) for k > 1.

Similarly, we have 

T̃ (Pk) = −f(kx)− xh(kx)

y
≥ −f(x)− xh(x)

y
= T (Pk) for k < 1.

This implies that the orbit ¡+(Pk) of  system (4) cannot move from inside (resp. outside) of ¡k to outside (resp. 
inside) when k>1 (resp. k<1). Thus, system (4) cannot have any closed orbit other than ¡. 

The mentioned facts above show that the only one limit cycle ¡ is stable and hyperbolic. □
Remark. The case where conditions (C5) or (C6) is not satisfied has been discussed in Section 3.

2.2  Applications
We shall apply Theorem 2 to concrete systems.
Example 2. Consider system (4) with 

⎧⎪⎨
⎪⎩

F (x) =
1

42
x7 +

m+ n

15
x6 +

m2 + 4mn+ n2

20
x5 +

m2n+mn2

6
x4 +

m2n2

6
x3 + rx

g(x) = px3 + qx,

where m<0<n, r<0, p>0 and q>0.
This is equivalent to the Liénard equation ẍ + F

′
(x)ẋ + g(x) = 0 in the form (2). Since f 0 (x) = F 00 (x) =  

x (x+m)2 (x+n)2, we see that f (x) and h(x) = px2+q are nondecreasing as jx j  increases. Thus, we conclude 
from Theorem 2 that the system has a unique limit cycle. . 

Obtaining the same result by other methods, for instance [H3] or [Zh] etc., is not easy. This method is 
straightforward and effective for this system. 
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Example 3. We consider the following system, known as a continuous piecewise linear Liénard system (PL):

F (x) =

⎧
⎨
⎩

TR(x− uR) + TCuR (x ≥ uR)
TCx (uL ≤ x ≤ uR)
TL(x− uL) + TCuL (x ≤ uL),

g(x) =

⎧
⎨
⎩

lR(x− vR) + lCvR (x ≥ vR)
lCx (vL ≤ x ≤ vR)
lL(x− vL) + lCvL (x ≤ vL),

where TR>0, TC<0, TL>0, lR>0, lC>0, lL>0, uL<0<uR and vL<0<vR. Llibre-Ordóñez-Ponce [LOP] 
established the unique existence of the limit cycle for this system under the conditions ¡uL = uR and ¡vL = vR. 
The solution orbits in this case have a special character. Our result improves upon this. Using Theorem 2, we have 
the following

Corollary 4. System (PL) has a unique limit cycle if lR¸ lC>0 and lL¸ lC>0.

3.  Tool 2 (Method without Masseraʼs condition)‡

First, we consider the generalized equation of (2) with one parameter:

ẍ+ λf(x)ẋ+ g(x) = 0, (5)

where ¸ is a positive real number. For instance see [H1] and [H4].
Equation (5) is equivalent to the following Liénard system:

ẋ = y − λF (x), ẏ = −g(x). (6)

Throught this section, we assume the conditions (C4) and
(C8) there exist ® and ¯ with ®<0<¯ such that x(x¡®)(x¡¯)F (x)>0.

Under the above assumptions that the uniqueness of solutions for system (6) in initial value problems is 
guaranteed, and the only equilibrium point (0, 0) is unstable. For instance see [Le].

Let G(x) =

∫ x

0

g(ξ)dξ
 
and assume G(®)¸G(¯) without loss of generality. Then there exists ¯ ¤2 [®, 0) such 

that G(¯) = G(¯ ¤). Also, see Section 2.
The following result  (see [Gr] or [CV]) is useful for the existence of the limit cycle.
Lemma 5. If the conditions (C4), (C7), and (C8) are satisfied, then system (6) has at least one limit cycle.
The following ([H1] or [HVZ]) is key to stating our result. Let Ω1 be the region surrounded by the closed curve 

‡  This result is based on the paper: M. Hayashi, A survey for a generalized Liénard equation without the Maseeraʼs condition, 
International Journal of Applied Mathematics, 35 (2022), 611–623. https://dx.doi.org/10.12732/ijam.v35i4.9.
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V (x,y)=(¸/2)y2+G(x)=G(¯ ). This curve surrounds the only equilibrium point (0, 0) of system (6) under the 
conditions (C4) and (C8).

Lemma 6. Assume the conditions (C4), (C7), and (C8). All limit cycles of system (6) exist outside Ω1 and 
intersect the lines x=¯ ¤ and x=¯ .

Consider the case where there exists r=/ 0 such that F 00 (r) = f 0 (r) = 0. Note that the Masseraʼs condition (C3) 
is not satisfied. 

Let

p = min
{
pi ∈ [α, 0) | F ′

(pi) = 0, F
′′
(pi) �= 0, i ∈ N

}
< 0

 and r = min
{
ri < 0 | F ′′

(ri) = 0, i ∈ N
}
.

For the function Φλ(x) = λF (x)2 + 2G(x) and some ¸ = ¸1>0, we define

aλ1 = max

{
x ∈ [0, β]

∣∣∣ Φλ1(x) = max
ξ∈[0,β]

(
λ1F (ξ)2 + 2G(ξ)

)}
.

Then, let

Mλ1 = min
{
−
√
λ1F (aλ1)

2 + 2G(aλ1) ,−
√
2G(β)

}
< 0

and let yA(x) be the solution orbit starting from the point A(0, M¸1). 
Lemma 7. Under the conditions (C4) and (C8), if there exists a negative number x1 = x1(¸1)2 (®, 0] such that 

yA(x)<0 for all x2 [x1, 0], then

yA(x1) < Mλ1 +

∫ x1

0

g(x)

λ1F (x)
dx.

In fact, we have

yA(x1) = yA(0) +

∫ x1

0

−g(ξ)

yA(ξ)− λ1F (ξ)
dξ < Mλ1 +

∫ xı

0

g(ξ)

λ1F (ξ)
dξ.

Thus, we can choose x1 such that the equation

Mλ1 +

∫ x1

0

g(x)

λ1F (x)
dx = 0 (7)

is satisfied. 
Lemma 8. In the case where Mλ1 = −√

λ1F (aλ1)
2 + 2G(aλ1),, the solution orbits (x(t), y(t)) cannot across 

the following curves C1[  C2 from the right side to the left side, where

C1 : y = λ1F (x) if aλ1 ≤ x ≤ β,

C2 : V (x, y) =
λ1

2
F (aλ1)

2 +G(aλ1) and y ≤ 0 if 0 ≤ x ≤ aλ1 .

In fact, we have ẋ(t) = 0  and ẏ(t) < 0 on C1, and also 
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V̇ (x(t), y(t)) = −λ1g(x(t))F (x(t)) > 0

on C2. See Figure 1 below.

In the case where x1 ∙ p, the following result is known from [H2] or [HT].
Theorem 9. Let x1 ∙ p. Under the conditions (C4), (C7), (C8), and additionally 

(C9) F(x) is nondecreasing for x ∙ x1 and x ¸ ¯,
system (6) has a unique limit cycle for all ¸ > 0. It intersects both the lines x=x1 and x=¯, and it is stable and 
hyperbolic. 

Note that the above result is independent of the existence of r.
If ¯ ¤ ∙ p, we do not need to calculate the above value x1. In fact, the following result is given in [H3].
Proposition 10. Let ¯ ¤ ∙ p. Under the conditions (C4), (C7), (C8), and additionally 

(C10) F (x) is nondecreasing for x ∙ ¯ ¤ and x ¸ ¯,
system (6) has a unique limit cycle for all ¸ > 0. It intersects both the lines x = ¯ ¤ and x = ¯ , and it is stable and 
hyperbolic.

Example 4. (the case of ¯ ¤ < p < r )

Proposition 10 is applied to system (6) with F (x) = x3+
x2

2
− 3

2
x

 
and g(x) = x2n−1.. In fact, this system has 

Figure 1 (
(
Mλ1 = −√

λ1F (aλ1)
2 + 2G(aλ1

)

1

Effective tools for analyzing the periodic motion of the generalized Liénard system（Hayashi）

― 111 ―



β∗ = −β = −1 < p = −1 +
√
19

6
< r = −1

6
.. According to Proposition 10, the above systems has a unique 

limit cycle without the need for calculating x1. 
Remark. In [H4], the results were given as Mλ = −√

2G(β).. When ¸ is large, we have 
Mλ = −√

λF (aλ)2 + 2G(aλ).. In this case, this method proves to be more useful than that in [H4].
We now consider the case of p < x1 and provide the supplymental function

L(x; s) =

√
1

F (x)

∫ x

s

g(ξ)

F (ξ)
dξ

for some constant s. This function was defined in [H4].
Theorem 11. Let p < x1. Assume the conditions (C4), (C7), (C8), and additionally 

(C11) F (x) is nondecreasing  for x ∙ p and x ¸ ¯.
Then, system (6) has a unique limit cycle for all ¸ ¸ ¸1 if

λ1 ≥ λ∗ = max
x∈[p,x1]

L(x; x1).

It intersects both the lines x = p and x = ¯, and it is stable and hyperbolic.

We shall prove the above theorem.
Let yA(x) be the solution orbit starting from the point A(0, M¸1). By solving the equation (7) for Lemma 7, 

there exists x12 (®, 0] such that yA(x) ∙ 0 for all x2 [x1, 0].
Let yB(x) be the solution orbit starting from the point B(x1, 0). If x1 ∙ p, then yB(x) must intersect the curve 

y = ¸1 F (x) for x < x1. See Figure 1. 
If x1 > p and ¸1 ¸ ¸¤, then, according to the Theorem in [H4], the orbit yB(x) must intersect the half segment 

l = {(x, y) | x = p, y ≤ λ1F (x)}.. Thus, from Lemma 6, Lemma 8, and the uniqueness of solution orbits that 

the orbit yB(x) must encircle clockwise outside Ω1 and cannot remain in the domain {(x, y) | p < x, y ∈ R}.. See 
Figure 2. 

Therefore, we conclude, based on results from [H2] or [HT], that system (6) has at most one limit cycle, and this 
limit cycle is unique, as established in Lemma 6. Also see [H4] or [HVZ]. □

Note that the above theorem is independent of the existence of r (p < r < ¯ ¤ or p < ¯ ¤ ∙ r ). Namely, 
Masseraʼs condition (C3) is not assumed.

Example 5. (the case of p < r ∙ ¯ ¤)
Consider system (6) with F (x) = x3  + 4x2¡5x and g(x) = x3. Since F 0 (x) = 3x2 + 8x¡5 and F 00 (x) = 6x 

+ 8, the system has ® = ¡5 and p = −4 +
√
31

3
< r =−4

3
< β∗ = −β = −1. 

We computed several values a¸1, M¸1, x1, and ¸¤ using the computer algebra system Maple. Let ¸1 = 0.3. We 
have a0.3 � 0.5607 and
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M0.3 = −
√
0.3F (a0.3)2 + 2G(a0.3) � −

√
0.61223 < −

√
2G(β) = −

√
2

2
.

Solving the equation (8), we get p < x1 � −1.8099 < β∗  and

λ∗ = max
x∈[p,x1]

√
1

F (x)

∫ x

0

30ξ2

6ξ4 + 45ξ3 + 80ξ2 − 90ξ − 270
dξ � 0.2080 < λ1 = 0.3.

Thus, we conclude from Theorem 11 that this system has a unique limit cycle for all ¸ ¸ 0.3.
We consider the case where G(®) < G(¯). Then there exists ®¤2 (0, ¯ ] such that G(®) = G(®¤). For some 

¸ = ¸2 > 0, we set

q = max
{
qj ∈ (0, β) | F ′

(qj) = 0, F
′′
(qj) �= 0, j ∈ N

}
> 0,

r∗ = max
{
ri > 0 | F ′′

(ri) = 0, i ∈ N
}
,

bλ2 = min

{
x ∈ [α, 0]

∣∣∣ Φλ2(x) = max
ξ∈[α,0]

(
λ2F (ξ)2 + 2G(ξ)

)}
.

Then, let

Mλ2 = max{
√

λ2F (bλ2)
2 + 2G(bλ2),

√
2G(α)} > 0

and yC(x) be the solution orbit starting from the point C (0, M¸2). 

Figure 2 (
(
Mλ1 = −√

2G(β) )

1
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Lemma 12. Under the conditions (C4) and (C8), if there exists a positive number x2 = x2(¸2)2 [0, ¯) such that 

yC(x) > 0 for all x2 [0, x2], then

yC(x2) > Mλ2 +

∫ x2

0

g(x)

λ2F (x)
dx.

We can choose x2 such that the equation

Mλ2 +

∫ x2

0

g(x)

λ2F (x)
dx = 0  (8)

is satisfied.
Corollary 13. Let x2 ¸ q. Under the conditions (C4), (C7), (C8), and additionally 

(C12) F (x) is nondecreasing for x ∙ ® and x ¸ x2,
system (6) has a unique limit cycle for all ¸ > 0. It intersects both the lines x = ® and x = x2, and it is stable and 
hyperbolic. 

Corollary 14. Let x2 < q. Assume the conditions (C4), (C7), (C8), and additionally 
(C13) F (x) is nondecreasing  for x ∙ ® and x ¸ q.

Then, system (6) has a unique limit cycle for all ¸ ¸ ¸2 if

λ2 ≥ λ∗∗ = max
x∈[x2,q]

L(x; x2).

It intersects both the lines x = ® and x = q, and it is stable and hyperbolic.

3.1 An application
In 1964, Duff and Levinson([DL]) proposed in the following system:

⎧⎨
⎩

ẋ = y − λ

�
64

35π
x7 − 112

5π
x5 +

196

3π
x3 − C

2
x2 − 36

π
x

�

ẏ = −x

 (DL)

System (DL) has three limit cycles if C is large enough and ¸ is small (see [Zh]). In 1997, [H1] provided a 
sufficient condition for ¸ such that system (DL) has exactly one limit cycle, as stated in the following 

Proposition 15. System (DL) with C = 45 has exactly one limit cycle for all ¸ � 2.86896.
Using the computer algebra system Maple, we find easily that system (DL) with C = 45 has ® � ¡0.38144,  

¯ � 3.1798, r¤ � 2.2300 and q � 2.694, satisfying the conditions (C4), (C7), (C8), and (C10). 
Let ¸(=¸2) = 0.15. We have b0.15 � ¡0.21735 and 

M0.15 =
√

0.15F (b0.15)2 + 2G(b0.15) �
√
0.2696 >

√
2G(α) = −α = 0.3814.,

where F (x) =
64

35π
x7 − 112

5π
x5 +

196

3π
x3 − C

2
x2 − 36

π
x  and g(x) = x.

.
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Then, solving the equation (8)

√
0.2696 +

∫ x2

0

x

F (x)
dx = 0,

we find ®¤ < x2 � 1.3995 < q and ¸¤¤ � 0.03478 < ¸ = 0.15. Thus, we conclude from Corollary 14 the following
Theorem 16. System (DL) with C = 45 has exactly one limit cycle for all ¸ ¸ 0.15.
This is a dramatic improvement over Proposition 15.

4. Tool 3 (Method for Non-existence)§

We consider the Liénard–type system

ẋ =
1

a(x)
{h(y)− λF (x)} , ẏ = −a(x)g(x), 

(9)

where a(x) > 0 for all x2R. This system generalizes of the Liénard system (4) or (6) and was discussed in [AM] 
and [H4]. 

The aim in this section is to establish sufficient conditions for the non-existence of limit cycles in system (9) 
under the following
(C14) a(x), F (x), and g(x) are locally Lipschitz continuous functions with g(x)/x > 0,
(C15) there exist ® < 0 such that x(x¡®)F (x) > 0 for x > ®,
(C16) h(y) is a non-decreasing continuous function with yh(y) > 0.

Under the above assumptions, the uniqueness of solutions of system (9) for initial value problems is guaranteed, 
and the only equilibrium point (0, 0) is stable.

In the case where F 0 (0) > 0, as indicated by (C15), the existence of a limit cycle is ruled out. Conversely, if 
F 0 (0) < 0, there exists a limit cycle for system (9) ensured by condition (C7).

Let y = y(x) be the solution orbits starting from the point P(x, h¡1F(x)) on the characteristic curve h(y) = F(x) 

and x ¸ ®¤, where G(x) =

∫ x

0

g(ξ)dξ
 
and ®¤ is a positive number such that G(®¤) = G(®).

We introduce a supplemental function

P (x) =

∫ x

0

a2(ξ)g(ξ)

−h(−L(α)) + F (ξ)
dξ − h−1(F (x))− L(α),

where 

|H−1(G(α))| = L(α) > 0 and H(y) =

∫ y

0

h(ξ)dξ > 0.

Our result is the following
Theorem 17. If P (x) ∙ 0 for all x ¸ ®¤, then system (9) does not exhibit any limit cycles.

§  This result is provided in the paper: M. Hayashi, A geometric criterion for the non-existence of the limit cycle of a Liénard-type 
system.
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4.1 Outline of the proofs
The proof consists of the following three lemmas. Detailed explanations are provided in the submitted paper§.
We consider the domain Ω¤ surrounded by the closed curves W(x, y) = H (y) +G (x) = G(®), where 

H(y) =
∫ y

0
h(ξ)dξ.. It surrounds the only one equilibrium point O of the system.

Lemma 18. Assume the conditions (C14), (C15), and (C16). Limit cycles of system (9) cannot reside within Ω¤.  
In other words, a solution orbit starting inside Ω¤ cannot exist Ω¤ through its boundary. 

The reason is similar to Lemma 6.
Lemma 19. If y (0) ¸ ¡L(®), then system (9) has no limit cycles.
The proof derives from the geometric context provided in Lemma 18.
Lemma 20. The inequality y (0) ¸ ¡L(®) is equivalent to the inequality P (x) ∙ 0 for all x ¸ ®¤.
Necessity is established by Lemma 19. Sufficiency is demonstrated as follows. Assuming that there exists 

x1 > ®¤ such that yx1 (0) < ¡L(®), we have

P (x1) =

∫ x1

0

a2(ξ)g(ξ)

−h(−L(α)) + F (ξ)
dξ − h−1(F (x1))− L(α) ≤ 0

and there exists x¤2 (0, x1) such that yx1(x¤) = ¡L(®). Then, we have P (x1) > 0. This contradicts P (x1) ∙ 0. □
Corollary 21. If the inequalities P (®¤) ∙ 0 and 

P
′
(x) =

a2(x)g(x)

−h(−L(α)) + F (x)
− d

dx
h−1(F (x)) ≤ 0

for all x ¸ ®¤,  then system (9) has no limit cycles.

4.2 Several examples
Theorem 17 can be applied to several systems of the form (9). By using Corollary 21, we can conclude that 

these systems do not exhibit limit cycles.
Example 6. Consider the system 

ẋ = y − (x2 + 2x), ẏ = −x2 − 3x . (10)

We have F(x) = x2+2x and G(x) =
x3

3
+

3

2
x2.. It follows that there exists ®¤ > 1 such that G(¡2) = G(®¤).

In this case, we find P (1) < 0 and
 
P

′
(x) < −1

2
(3x + 1) < 0 for all x ¸ 1.

Example 7. Consider the system 

ẋ = y3 − (x3 + 3x2 + 2x), ẏ = −x . （11）

We have h(y) = y3, F(x) = x3+3x2+2x, and G(x) =
1

2
x2.. Given h(y) = y3, ® = ¡1, L(α) = 4

√
2  and

P (x) =

∫ x

0

ξ
4
√
8 + ξ3 + 3ξ2 + 2ξ

dξ − 3
√
x3 + 3x2 + 2x− 4

√
2.
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It follows that P (1) < 0 and P 0(x) < 0 for all x ¸ 1. 
Example 8. We consider the following system called Bogdanov–Takens system (for instance see [H5], 
[MKKT], [P], or [RW]) exhibiting a cusp of order 2:

{
ẋ = y
ẏ = (x+ μ2)y + x2 + μ1, 

(BT)

where  ¹1 and ¹2 are real parameters. This system is a special case of the Liénard system (3) and is well-known in 
Bifurcation Theory. Applying Corollary 21, we have the following

Proposition 22. System (BT) has no limit cycles if μ1 > −μ2
2..

This result aligns with the partial  result previously observed in bifurcation diagrams (for instance see 
[MKKT]).     

Example 9. The two dimensional autonomous system is called the FitzHugh-Nagumo system ([HH], [Fi], 
[Na], [H1], [H6], and [Su] etc.) can be transformed into the Liénard  system as follows.

⎧⎪⎪⎨
⎪⎪⎩

ẋ = y −
�
1

3
x3 + ηx2 + (η2 − η20)x

�

ẏ = −ρb

3

�
x3 + 3ηx2 + 3

�
η2 +

1

b
− 1

�
x

� (FHN)

By Corollary 21, we have the following
Proposition 23. System (FHN) has no limit cycles under ´ 2 > ´ 0

2 and other conditions for ´ 2 and ´ 0
2. 

This result is partially consistent with the findings in [Su].
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