
1  Introduction

The Sobolev space plays an important role in the theory of partial differential equations, combined with functional 
analysis. Smoothness of functions is measured by the norm of the Lebesgue space Lp(Rn) if the functions belong 
to the Sobolev space. The Triebel-Lizorkin space and Besov space are generalizations of the Sobolev space, and 
they can deal with smoothness of functions more precisely. In recent years it has turned out that the Morrey space 
is useful to measure the size of functions and compensate the deficit of the Lebesgue space. For example, the 
function jx j ¡n=p does not belong to the Lebesgue space Lp(Rn), but it belongs to the Morrey space Mp,q(Rn) if 
0 < q < p < 1 . Accordingly, we expect that investigation of functions by the Morrey space provides us with 
fruitful results. By replacing the Lebesgue space Lp with the Morrey space Mp,q in the definitions of the Sobolev 
space, Triebel-Lizorkin space and Besov space, we obtain the definitions of the Sobolev-Morrey space, Triebel-
Lizorkin-Morrey space and Besov-Morrey space, respectively. 

Most results obtained for the Lp-based space can be carried over to the Mp,q-based space. For example, it is 
known that if a(» ) is a symbol of order 0, then the operator a(D) is bounded on Lp(Rn) for 1 < p < 1 . We can 
assert that a(D) is also bounded on Mp,q(Rn) for 1 < q ∙ p < 1 . The key idea of extending the results for the 
Lebesgue space to the Morrey space is found in Peetre’s paper [4]. First we split a function f into f = f0 + f1, 
where f0 is supported in the ball of radius R centered at a point a, and f1 vanishes in this ball. Then we apply the 
result for the Lebesgue space to f0 and evaluate the term involved with f1 by the Morrey norm. 

The fundamental results related to the Morrey space are scattered in many papers, and some of them have only 
sketch of their proofs. The aim of this study is to collect the fundamental results on the Morrey space and give 
their proofs in detail so that they are easily accessible for those who want to apply Morrey spaces to their own 
studies. Some theorems will be proved in a way different from the known proofs. As analysis using the Morrey 
space is developing mathematical science, it will be useful to the study of economics.
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2  Basic properties of Morrey spaces

For 1 ∙ p ∙ 1  let Lp(Ω) be the space of p-integrable functions on a domain Ω of Rn with the norm � · �Lp(Ω). 

When Ω = Rn, we often write ‖f‖Lp
 or ‖f‖p  for ‖f‖Lp(Rn). 

Let B(x, R) be the open ball with center x2Rn and radius R > 0. For 0 < q ∙ p < 1  we set

�f�Mp,q
= �f�p,q = sup

B
|B| 1p− 1

q

(∫

B

|f(x)|q dx
) 1

q

for a measurable function f, where the supremum is taken over all balls B in Rn. We define the Morrey space 
Mp,q(Rn) to be the space of all measurable functions f satisfying �f�p,q < ∞. When p = q, the Morrey space 
Mp,q coincides with the Lebesgue space Lp(Rn):

Mp,p(Rn) = Lp(Rn).

The Morrey space is sometimes denoted by Lq,¸(Rn) with 0 < q < 1  and 0 ∙ ¸ ∙ n, which consists of all 
measurable functions f such that the norms

�f�q,λ :=

(
sup

R>0, x∈Rn

R−λ

∫

B(x,R)

|f(y)|q dy
) 1

q

are finite. It is easy to see that Mp,q(Rn) = Lq,λ(Rn)  if ¸ = n(1¡q/p). 
The scaling of f by ¸ > 0 is defined by

fλ(x) = f(λx).

For a ball B = B(a, R) and ¸ > 0 we set ¸B = B(a, ¸R). As observed from the following two lemmas, the index 
p plays a central role in the Morrey space Mp,q rather than q. 

Lemma 2.1. For ¸ > 0 and f2Mp,q(Rn) with 0 < q ∙ p < 1  we have

‖fλ‖Mp,q = λ−n
p ‖f‖Mp,q .

Proof. The change of variables ¸x = y gives 

|B| 1p− 1
q

(∫

B

|f(λx)|q dx
) 1

q

= |B| 1p− 1
q

(
λ−n

∫

λB

|f(y)|q dy
) 1

q

= λ−n
p |λB| 1p− 1

q �f�Lq(B).

Taking the supremum, we obtain the lemma.  □
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Lemma 2.2. The function |x|−n
p  belongs to Mp,q(Rn) for 0 < q < p < 1 , although |x|−n

p /∈ Lp(Rn). 

Proof. Note that jxj ¡n/p ¸ R¡n/p for x2B(0, R) =: B(R), and jxj ¡n/p ∙ R¡n/p for x2B(0, R)c. In addition, 
jB(a, R)nB(0, R)j = jB(0, R)nB(a, R)j . Hence

∫

B(a,R)

(|x|−n
p )q dx =

∫

B(a,R)∩B(0,R)

|x|−nq
p dx+

∫

B(a,R)\B(0,R)

|x|−nq
p dx

≤
∫

B(a,R)∩B(0,R)

|x|−nq
p dx+

∫

B(0,R)\B(a,R)

|x|−nq
p dx

=

∫

B(0,R)

|x|−nq
p dx =

|B(1)|
1− q

p

Rn(1− q
p ).

This implies that the Morrey norm of |x|−n
p  is bounded by |B(1)|1/p(1− q

p )
−1/q .  □

Lemma 2.3. Let 0 < q < q1 ∙ p < 1 . Then

Mp,q1(Rn) ⊂ Mp,q(Rn)

Proof. The lemma follows from Hölder’s inequality or Jensen’s inequality for convex functions: 

(
1

|B|
∫

B

|f(x)|q dx
) 1

q

≤
(

1

|B|
∫

B

|f(x)|q1 dx
) 1

q1

.

  □
Lemma 2.4. Let f2Mp,q(Rn) with 1 ∙ q ∙ p < 1 . Then for a ball B we have

∫

B

|f(y)| dy ≤ |B|1− 1
p �f�Mp,q

.

Proof. Hölder’s inequality gives
∫

B

|f(y)| dy ≤ |B|1− 1
q �f�Lq(B) ≤ |B|1− 1

p �f�p,q,

which is the desired result.  □

Lemma 2.5. For 1 ∙ q ∙ p < 1  we have Mp,q(Rn) ⊂ S ′(Rn)  by defining the pairing

�f, ϕ� =
∫

Rn

f(x)ϕ(x) dx f ∈ Mp,q(Rn) ϕ ∈ S(Rn)

Remark. It is obvious that f2Mp,q is a Schwartz distribution for 1 ∙ q, since Mp,q ⊂ Lloc
1 . The lemma asserts 

more strongly that f is a tempered distribution. 

Proof. Let Ω0 =B(0, 1) and Ωj =B(0, 2 j)nB(0, 2 j¡1) for j 2 N. Since ϕ ∈ S(Rn) satisfies |ϕ(x)| � (1 + |x|)−n, 
we have 
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∫

Rn

|f(x)ϕ(x)| dx �
∞∑
j=0

∫

Ωj

|f(x)|
(1 + |x|)n dx ≤

∞∑
j=0

2−n(j−1)

∫

|x|≤2j
|f(x)| dx

≤
∞∑
j=0

2−n(j−1)|B(0, 2j)|1− 1
p �f�p,q �

∞∑
j=0

2−
jn
p �f�p,q.

This implies that f is a bounded linear functional on S .  □

Lemma 2.6. Let 0 < q < p < 1 . The space Mp,q(Rn) ∩ L∞(Rn)  is not dense in the Morrey space Mp,q(Rn). 
Accordingly, neither C∞

0 (Rn) S(Rn)  is dense in Mp,q(Rn). 

Proof. This lemma is found in [7, p25], but the proof is omitted. Set f(x) = |x|−n/p, and let g ∈ Mp,q(Rn) ∩ L∞(Rn). 
Choose ² so that �−n/p = ‖g‖L∞ . Then we have, for jxj ∙ 2¡p/n², 

|f(x)− g(x)| ≥ |x|−n/p − �−n/p ≥ 1
2 |x|−n/p.

Hence, with B(r) =B(0, r) for r > 0, 

�f − g�Mp,q
≥ |B(2−

p
n �)| 1p− 1

q

(∫

B(2−
p
n �)

|x|−nq/p dx

)1/q

=
|B(1)| 1p
(1− q

p )
1
q

.

Since the last constant depends only on n, p and q, we obtain the lemma.  □

Lemma 2.7. Let 1 ∙ q ∙ p < 1 . A polynomial P (x) belongs to Mp,q(Rn) if and only if P (x) = 0. 

Proof. Assume that P (x) is a polynomial and not identically 0. Then there exist R0 > 0, ± > 0 and ! 2 Rn with  
j! j = 1 such that jP(x)j  ¸ 1 if jx j ¸ R0 and jx/ jx j¡! j ∙ ±. Let E be the cone defined by

E = {x ∈ Rn \ {0} : |x/|x| − ω| ≤ δ}.

For R ¸ 2R0 we have

�P�Lq(B(0,R)) ≥ |(B(0, R) \B(0, R/2)) ∩ E| 1q ,

which gives

�P�p,q ≥ |B(0, R)| 1p− 1
q �P�Lq(B(0,R)) � |B(0, R)| 1p .

Since |B(0, R)| → ∞ R → ∞ P /∈ Mp,q(Rn).  □
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3  Hardy-Littlewood maximal operators

For a locally integrable function f we set

Mf(x) = sup
R>0

1

|B(0, R)|
∫

B(x,R)

|f(y)| dy.

We call M the Hardy-Littlewood maximal operator. 

Theorem 3.1. (i) Let 1 < p < 1 . M is bounded on Lp(Rn) and satisfies

�Mf�Lp ≤ 2

(
3np

p− 1

) 1
p

�f�Lp .

f ∈ L1(Rn) λ > 0

|{Mf > λ}| ≤ 3n

λ

∫

Rn

|f(x)| dx.

(ii) For f2L1(Rn) and ¸ > 0 we have

�Mf�Lp ≤ 2

(
3np

p− 1

) 1
p

�f�Lp .

f ∈ L1(Rn) λ > 0

|{Mf > λ}| ≤ 3n

λ

∫

Rn

|f(x)| dx.

Proof. See Theorem 1.45 and Corollary 1.3 in [6]. We note that (i) follows from (ii) and the obvious inequality 
�Mf�∞ ≤ �f�∞  by using the Marcinkiewicz interpolation theorem.  

Theorem 3.2 (Chiarenza-Frasca 1987). (i) Let 1 < q ∙ p < 1 . Then M is bounded on Mp,q(Rn) and satisfies 

�Mf�Mp,q
�n,p,q �f�Mp,q

.

1 ≤ p < ∞ λ > 0 B

∣∣{Mf > λ} ∩B
∣∣ �n,p

|B|1− 1
p

λ
�f�Mp,1

.

(ii) Let 1 ∙ p < 1 . Then for ¸ > 0 and a ball B

�Mf�Mp,q
�n,p,q �f�Mp,q

.

1 ≤ p < ∞ λ > 0 B

∣∣{Mf > λ} ∩B
∣∣ �n,p

|B|1− 1
p

λ
�f�Mp,1

.

Proof. The proof by Chiarenza-Frasca [1] uses the dual inequality of Stein-type (see [6, Corollary 1.3, p112]). 
For (i) we give here another proof which uses the Lp boundedness of M. Take x02Rn and R > 0 arbitrarily, and set 

Ω0 = B(x0, 2R), Ωj = B(x0, 2
j+1R) \B(x0, 2

jR) j ∈ N  (3.1)

In what follows we write B(x0, R) simply as B(R). Following the method of Tang-Xu [11], we set fj = fχΩj  
and decompose f as 

f =

∞∑
j=0

fj .

Since Mf ≤ ∑
j Mfj , Minkowski’s inequality gives
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(∫

B(R)

(Mf)q dx

) 1
q

≤
∞∑
j=0

(∫

B(R)

(Mfj)
q dx

) 1
q

.

For f0 we use the Lp boundedness of M to get

�Mf0�Lq(B(R)) � �f�Lq(B(2R)) ≤ |B(2R)|− 1
p+

1
q �f�p,q.

Let j ¸ 1. For x2B(R) we have

(Mfj)(x) ≤ 1

|B(2jR)|
∫

Ωj

|f(y)| dy ≤ |B(2j+1R)|1− 1
p

|B(2jR)| �f�p,q � |B(2jR)|− 1
p �f�p,q.

Hence

�Mfj�Lq(B(R)) � |B(R)| 1q |B(2jR)|− 1
p �f�p,q � 2−

jn
p |B(R)|− 1

p+
1
q �f�p,q.

Combining the above inequalities, we get 

‖Mf‖p,q �

⎛
⎝1 +

∞�
j=1

2−
jn
p

⎞
⎠ ‖f‖p,q,

which yields the theorem. 
For (ii) we follow the method of Chiarenza-Frasca [1]. For a weight w, i.e. a non-negative function on Rn, we 

denote by w(D) for a measurable subset D. We use the same notation as in the proof of (i). Applying the dual 
inequality of Stein-type (see [6, Theorem 1.45]) to the weight w = ÂB(R), we have

w(Mf > λ) = w({x : Mf(x) > λ}) ≤ 3n

λ

∫

Rn

|f(x)|MχB(R)(x) dx.

By definition of the maximal function we find that

MχB(R)(x) � 1 |x− x0| ≤ 2R

MχB(R)(x) �n
Rn

(|x− x0| −R)n
|x− x0| ≥ 2R

Then

�

Rn

|f(x)|MχB(R)(x) dx �
�

B(2R)

|f(x)| dx+
∞�
j=1

�

B(2j+1R)\B(2jR)

|f(x)|Rn

(|x− x0| −R)n
dx

� |B(2R)|1− 1
p �f�p,1 +

∞�
j=1

�

B(2j+1R)

|f(x)|Rn

(2j−1R)n
dx

� |B(R)|1− 1
p �f�p,1 +

∞�
j=1

2−jn|B(2j+1R)|1− 1
p �f�p,1

� |B(R)|1− 1
p �f�p,1

⎛
⎝1 +

∞�
j=1

2−
jn
p

⎞
⎠ .
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On the other hand, 

w(Mf > λ) =

∫

Mf>λ

χB(R)(x) dx =
∣∣{Mf > λ} ∩B(R)

∣∣.

Summing up, we obtain (ii). □ 

Theorem 3.3 (Fefferman-Stein 1971). Let 1 < p < 1  and 1 < r ∙ 1 . Let ffjg be a sequence of measurable 
functions on Rn. Then

�������

⎛
⎝

∞�
j=1

(Mfj)
r

⎞
⎠

1
r

�������
Lp

�������

⎛
⎝

∞�
j=1

|fj |r
⎞
⎠

1
r

�������
Lp

.n,p,r

Proof. This theorem is the vector-valued maximal inequality, which was first obtained by Fefferman-Stein [2]. See 
[6, Theorem 1.49] for a simpler proof.  □

Theorem 3.4 (Tang-Xu 2005). Let 1 < q ∙ p < 1  and 1 < r ∙ 1 . Let ffjg be a sequence of measurable 
functions on Rn. Then

�������

⎛
⎝

∞�
j=1

(Mfj)
r

⎞
⎠

1
r

�������
Mp,q

�������

⎛
⎝

∞�
j=1

|fj |r
⎞
⎠

1
r

�������
Mp,q

.n,p,q,r

Proof. We follow the method of Tang-Xu [11]. Let x02Rn and R > 0 fixed arbitrarily, and define Ωi with i2N0 
as in (3.1). We decompose fj as 

fj =

∞∑
i=0

f i
j , f i

j = fjχΩi
.

For i = 0 we have, by Theorem 3.3, 

∥∥�{Mf0
j }�lr

∥∥
Lq(B(R))

�q,r

∥∥�{fj}�lr
∥∥
Lq(B(2R))

≤ |B(2R)|− 1
p+

1
q

∥∥{fj}�lr
∥∥
p,q

.

For i ¸ 1 we use Minkowski’s inequality twice to get

⎧
⎪⎨
⎪⎩

�

B(R)

⎛
⎝

∞�
j=1

�
M

� ∞�
i=1

f i
j

��r
⎞
⎠

q
r

dx

⎫⎪⎬
⎪⎭

1
q

≤

⎧⎪⎨
⎪⎩

�

B(R)

⎛
⎝

∞�
j=1

� ∞�
i=1

Mf i
j

�r
⎞
⎠

q
r

dx

⎫⎪⎬
⎪⎭

1
q

≤

⎧⎪⎨
⎪⎩

�

B(R)

⎛
⎜⎝

∞�
i=1

⎛
⎝

∞�
j=1

(Mf i
j)

r

⎞
⎠

1
r

⎞
⎟⎠

q

dx

⎫⎪⎬
⎪⎭

1
q

≤
∞�
i=1

⎧⎪⎨
⎪⎩

�

B(R)

⎛
⎝

∞�
j=1

(Mf i
j)

r

⎞
⎠

q
r

dx

⎫⎪⎬
⎪⎭

1
q

.
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Here we used �{�{aij}i�l1}j�lr ≤ �{�{aij}j�lr}i�l1 for a double-indexed sequence {aij}i,j  in the second inequality, 
and �∑i gi�q ≤ ∑

i �gi�q  in the third inequality. 
For i ¸ 1 and x2B(R) we have

⎛
⎝

∞�
j=1

(Mf i
j)

r(x)

⎞
⎠

1
r

�

⎛
⎝

∞�
j=1

�
1

|B(2i−1R)|
�

Ωi

|fj(y)| dy
�r

⎞
⎠

1
r

≤ 1

|B(2i−1R)|
�

B(2i+1R)

⎛
⎝

∞�
j=1

|fj(y)|r
⎞
⎠

1
r

dy

≤ |B(2i+1R)|1− 1
q

|B(2i−1R)|
���{fj}�lr

��
Lq(B(2i+1R))

� 2−
in
p |B(R)|− 1

p

���{fj}�lr
��
p,q

.

Therefore

∥∥�{M
( ∞∑

i=1

f i
j

)
}j�lr

∥∥
Lq(B(R))

�
∞∑
i=1

2−
in
p |B(R)|− 1

p+
1
q

∥∥�{fj}�lr
∥∥
p,q

.

Combining the estimates for i = 0 and i ¸ 1, we obtain the theorem. 

4  Littlewood-Paley theory

We choose a C1 function Ã whose Fourier transform Fψ(ξ) = ψ̂(ξ) =
∫
Rn e−2πixξψ(x) dx  satisfies 

χB(0,1) ≤ ψ̂ ≤ χB(0,2),
 (4.1)

where ÂD denotes the characteristic function of a subset D½Rn. We define a family of C1 functions {φj}j∈Z  by

φ̂j(ξ) = ψ̂(2−jξ)− ψ̂(21−jξ).  (4.2)

We note that these functions satisfy the following properties: 

φ̂j ≥ 0, supp φ̂j ⊂ {ξ| 2j−1 ≤ |ξ| ≤ 2j+1}, φ̂j(ξ) = φ̂0(2
−jξ),

ψ̂(ξ) +

∞∑
j=1

φ̂j(ξ) = 1 ξ ∈ Rn
∞∑

j=−∞
φ̂j(ξ) = 1 ξ ∈ Rn \ {0}

It is convenient to define the spaces and norms of vector-valued functions 

{fj}j∈Z = (· · · , f−2(x), f−1(x), f0(x), f1(x), f2(x), · · · )

on Rn. Let 0 < q ∙ p < 1  and 0 < r ∙ 1 . We denote by Mp,q(Rn, lr) the space of all lr-valued functions {fj}j∈Z  
satisfying �{fj}�lr := (

∑
j∈Z |fj |r)

1
r ∈ Mp,q(Rn), and set

�{f}j�Mp,q(lr) = ��{fj}�lr�Mp,q

 (4.3)
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with the usual modification for r = 1 . The space Lp(Rn,lr) and the norm �{fj}�Lp(lr) are defined similarly. 
The Littlewood-Paley theory for Lp spaces, which is stated below, asserts that Lp(Rn) is isomorphic to Lp(Rn,l2) 

in some sense. 

Theorem 4.1. Let 1 < p < 1 . Then
∥∥�{φj ∗ f}j∈Z�l2

∥∥
Lp

∼ �f�Lp
.

In other words, 
⎡
⎢⎣
�

Rn

⎛
⎝

∞�
j=−∞

|φj ∗ f |2
⎞
⎠

p
2

dx

⎤
⎥⎦

1
p

∼ �f�Lp
.

Proof. See [6, Theorem 3.2] □

Theorem 4.2 (Mazzucato 2003). Let 1 < q ∙ p < 1 . Then 

�������

⎛
⎝

∞�
j=−∞

|φj ∗ f |2
⎞
⎠

1
2

�������
Mp,q

∼ �f�Mp,q
.

In other words, 

sup
B

|B|− 1
p+

1
q

⎡
⎢⎣
�

B

⎛
⎝

∞�
j=−∞

|φj ∗ f |2
⎞
⎠

q
2

dx

⎤
⎥⎦

1
q

∼ �f�Mp,q .

Theorem 4.2, which extends Theorem 4.1 to Morrey spaces, can be proved in the same line of the proof of 
Theorem 4.1, although we need to avoid use of the duality argument that does not work for Morrey spaces. For the 
proof of Theorem 4.2 we prepare some lemmas which are involved with the maps between Mp,q(Rn, l2)  and 
Mp,q(Rn). 

Lemma 4.3 (Khinchine’s inequality). Let {rj(t)}j∈N be the Rademacher sequence of functions defined on [0, 1].  
Let 0 < p < 1 . For [0, 1] 0 < p < ∞ {aj}j∈N ∈ l2  we have

∥∥∥∥∥∥
∞∑
j=1

ajrj

∥∥∥∥∥∥
Lp(0,1)

∼ �{aj}�l2 .

Proof. See [6, Theorem 3.1]. □
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Lemma 4.4. Let {rj(t)}j∈Z  be the Rademacher sequence of functions, which is rearranged so that the subscripts 
j range over Z. Then

∣∣∣∣∣∣
∑
j∈Z

rj(t)φj(x)

∣∣∣∣∣∣
≤

∑
j∈Z

|φj(x)| �n |x|−n

 (4.4)

for t2 [0, 1] and x=/ 0. 
Proof. The first inequality is obvious by |rj(t)| ≤ 1. Since |φ0(x)| ≤ C(1 + |x|)−n−1 and φj(x) = 2jnφ0(2

jx), 
we have

J := |x|n
∑
j

|φj(x)| �
∑
j

(2j |x|)n
(1 + |2jx|)n+1

.

Choose l2Z so that 2−l−1 < |x| ≤ 2−l. Then

J �
l∑

j=−∞
2n(j−l) +

∞∑
j=l+1

2n(j−l)

2(n+1)(j−l−1)
≤ 2n+1

∑
j∈Z

2−|j−l| �
∑
j∈Z

2−|j|,

which yields the lemma.  □

Lemma 4.5. Let 1 < q ∙ p < 1 . If f2Mp,q(Rn), then 

�������

⎛
�

|φj ∗ f |2
⎞
⎠

1
2

�������
Mp,q

�n,p,q �f�Mp,q
.

j 2 Z

⎝

Proof. Let x02Rn and R > 0 fixed arbitrarily. Decompose f as

f = f0 + f1, f0 = fχB(2R), f1 = f(1− χB(2R)),

where B(2R) = B(x0, 2R). The result for Lp spaces gives

∫

B(R)

(∑
j

|φj ∗ f0|2
) q

2

dx �
∫

B(2R)

|f |q dx ≤
(
|B(2R)|− 1

p+
1
q �f�p,q

)q

.

For f1 we use Theorem 4.3 with a suitably arranged Rademacher’s sequence to get

�

B(R)

⎛
⎝�

j

|φj ∗ f1(x)|2
⎞
⎠

q
2

dx �
� 1

0

dt

�

B(R)

������
�
j

rj(t)φj ∗ f1(x)
������

q

dx.

We note that 

|x− y| ≥ |y − x0| − |x− x0| ≥ 2i−1R,

if x2B(R) = B(x0, R) and jy¡x0 j ¸ 2iR with i2N. For x2B(R) we have, by Lemma 4.4, 
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∣∣∣∣∣∣
∑
j

rj(t)φj ∗ f1(x)
∣∣∣∣∣∣
�

∫

|y−x0|>2R

|x− y|−n|f(y)| dy

�
∞∑
i=1

∫

2iR<|y−x0|≤2i+1R

(2iR)−n|f(y)| dy

�
∞∑
i=1

(2iR)−n|B(2i+1R)|1− 1
p �f�p,q

� |B(R)|− 1
p �f�p,q

∞∑
i=1

2−
in
p .

Hence

�

B(R)

⎛
⎝�

j

|φj ∗ f1(x)|2
⎞
⎠

q
2

dx � |B(R)|
�
|B(R)|− 1

p �f�p,q
�q

=
�
|B(R)|− 1

p+
1
q �f�p,q

�q

.

Combining the estimates for f0 and f1, we obtain the lemma.  □

Lemma 4.6. If {fj}j∈Z ∈ Mp,q(Rn, l2), then the series 
∑

j∈Z φj ∗ fj =: T ({fj}) converges in Mp,q(Rn), and 
the map {fj}j∈Z �→ T ({fj}) is a bounded linear operator from Mp,q(Rn, l2) → Mp,q(Rn) to Mp,q(Rn, l2) → Mp,q(Rn), i.e.

∥∥∥
∑
j∈Z

φj ∗ fj
∥∥∥
Mp,q

�n,p,q ��{fj}�l2�Mp,q
.

Proof. The assertion on the Mp,q convergence can be seen from the fact that the calculations below hold for the 
sum in j ranging over any subset of Z. 

Let x02Rn and R > 0 fixed arbitrarily. We decompose fj as 

fj = f0
j + f1

j , f0
j = fjχB(2R), f1

j = fj(1− χB(2R)),

where B(2R) = B(x0, 2R). From the result for Lp spaces we have

�T ({f0
j })�Lq(B(R)) � �{f0

j }�Lq(Rn) ≤ �{fj}�Lq(B(2R)) � |B(R)|− 1
p+

1
q �{fj}�Mp,q(l2),j}�Lq(Rn,l2) ≤ �{fj}�Lq(B(2R),l2)f 0�T ({f0

j })�Lq(B(R)) � �{f0
j }�Lq(Rn) ≤ �{fj}�Lq(B(2R)) � |B(R)|− 1

p+
1
q �{fj}�Mp,q(l2),

which gives

�T ({f0
j })�Mp,q � �{fj}�Mp,q(l2).

For x2B(R) = B(x0, R) we have 

�
j∈Z

|φj ∗ f1
j (x)| ≤

�
j∈Z

�

|y−x0|>2R

|φj(x− y)f1
j (y)| dy

≤
�

|y−x0|>2R

⎛
⎝�

j

|φj(x− y)|2
⎞
⎠

1
2
⎛
⎝�

j

|f1
j (y)|2

⎞
⎠

1
2

dy.

Overview of Morrey spaces（Miyazaki）

― 131 ―



Since the same argument as in the proof of Lemma 4.4 yields

⎛
⎝�

j∈Z
|φj(x)|2

⎞
⎠

1
2

�n |x|−n,

we have 

∑
j∈Z

|φj ∗ f1
j (x)| �

∫

|y−x0|>2R

|x− y|−n�{fj(y)}�l2 dy

�
∞∑
i=1

∫

2iR<|y−x0|≤2i+1R

(2iR)−n�{fj(y)}�l2 dy

� (2iR)−n|B(2i+1R)|1− 1
p

∥∥�{fj}�l2
∥∥
Mp,q

�
∞∑
i=1

2−
in
p |B(R)|− 1

p �{fj}�Mp,q(l2).

Hence

�T ({f1
j })�Lq(B(R)) � |B(R)|− 1

p+
1
q �{fj}�Mp,q(l2).

Combining the estimates for {f0
j } and {f1

j }, we obtain the lemma.  □

Proof of Theorem 4.2. Mazzucato [3] gave only an outline of the proof. We will prove this theorem in a slightly 
different way by Lemmas 4.5 and 4.6. 

The inequality �  is Lemma 4.5 itself. 
For the converse inequality � we consider the map f �→ ∑

j∈Z φj∗f  as the composition of two maps

T : Mp,q(Rn) → Mp,q(Rn, l2), T f := {φj ∗ f}j∈Z

S : Mp,q(Rn, l2) → Mp,q(Rn), S({fj}) :=
∑
j∈Z

φj ∗ f =
∑
j∈Z

ϕj ∗ (φj ∗ f)

with ϕj = φj−1 + φj + φj+1, where the last equality follows from φj = ϕj ∗ φj. Lemma 4.6 holds if Áj is replaced 
by 'j. Combining this fact with Lemma 4.5, we find that the map f �→ F := S(Tf) is a bounded operator from 
Mp,q to itself. Since f̂ − F̂ coincides with f̂ − F̂  in Rnnf0g by 

∑
j∈Z φ̂j(ξ) = 1 ξ �= 0 for 

∑
j∈Z φ̂j(ξ) = 1 ξ �= 0, we know that f̂ − F̂  is supported 

on the origin, and hence that f¡F is a polynomial. By Lemma 2.7 we obtain f = F. This completes the proof.  □

5  Besov-Morrey and Triebel-Lizorkin-Morrey spaces

In this section we define various function spaces associated with the Morrey space, and show the embedding 
theorems. 

Let Ã and {φj}j∈Z  be as defined in (4.1) and (4.2). Remember that the space Mp,q(Rn, lr) and the norm 
�{fj}�Mp,q(lr) are defined in (4.3). We also define lr(Mp,q(Rn)) to be the space of all lr-valued functions {fj}j∈Z  
satisfying {�fj�Mp,q

}∈Z ∈ lr, and set
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�{fj}�lr(Mp,q) :=

⎛
⎝�

j∈Z
(�fj�Mp,q

)r

⎞
⎠

1
r

.

The space lr(Lp(Rn)) and the norm �{fj}�lr(Lp) are defined similarly. 
Let 0 < q ∙ p < 1 , 0 < r ∙ 1  and s2R. The Triebel-Lizorkin-Morrey space Es

p,q,r(Rn) is the space of all 

tempered distributions f ∈ S ′(Rn)  whose quasi-norms 

�f�Es
p,q,r

:= �ψ ∗ f�Mp,q
+

�������

⎛
⎝

∞�
j=1

2jsr|φj ∗ f |r
⎞
⎠

1
r

�������
Mp,q

are finite. Similarly, the homogeneous Triebel-Lizorkin-Morrey space Ės
p,q,r(Rn), the Besov-Morrey space N s

p,q,r(Rn) 

and the homogeneous Besov-Morrey space Ṅ s
p,q,r(Rn) are defined by the quasi-norms

�f�Ės
p,q,r

:= �{2jsφj ∗ f}�Mp,q(lr) =

�������

⎛
⎝

∞�
j=−∞

2jsr|φj ∗ f |r
⎞
⎠

1
r

�������
Mp,q

,

�f�N s
p,q,r

:= �ψ ∗ f�Mp,q
+

⎛
⎝

∞�
j=1

(2js�φj ∗ f�Mp,q
)r

⎞
⎠

1
r

,

�f�Ṅ s
p,q,r

= �{2jsφj ∗ f}�lr(Mp,q) :=

⎛
⎝

∞�
j=−∞

(2js�φj ∗ f�Mp,q
)r

⎞
⎠

1
r

,

respectively. In view of Mp,p(Rn) = Lp(Rn), we have the relationships of the above spaces with the Triebel-Lizorkin 
space F s

p,r(Rn), the Besov space Bs
p,r(Rn), the corresponding homogeneous spaces Ḟ s

p,r(Rn) and Ḃs
p,r(Rn):

F s
p,r(Rn) = Es

p,p,r(Rn), Bs
p,r(Rn) = N s

p,p,r(Rn),

Ḟ s
p,r(Rn) = Ės

p,p,r(Rn), Ḃs
p,r(Rn) = Ṅ s

p,p,r(Rn).

Exceptionally, the Besov space B1 ,r(Rn) can be defined for p = 1  by considering M1 ,1(Rn) as L1(Rn). The 
special case r = 2 gives the definition of the Sobolev space and the homogeneous one:

Hs
p(Rn) = F s

p,2(Rn), Ḣs
p(Rn) = Ḟ s

p,2(Rn).

We define the powered Hardy-Littlewood maximal operator M´  by

Mηf = M [|f |η] 1η

for ´ > 0. The following theorem plays a key role to investigate the function spaces defined above, especially for 
the case 0 < q ∙ p ∙ 1 or 0 < r ∙ 1. 
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Theorem 5.1 (Plancherel-Polya-Nikolskii’s inequality). Let ´ > 0, R > 0 and f ∈ S ′(Rn)  with f̂ ⊂ B(0, R). 
Then

R−1 sup
y∈Rn

|∇f(x− y)|
 (1 +Rjyj)´n

�n,η sup
y∈Rn

|f(x− y)| �n,η Mηf(x)

Mηf = M [|f |η]1/η
 (1 +Rjyj)´n

with 

R−1 sup
y∈Rn

|∇f(x− y)|
(1 +R|y|) η

n

�n,η sup
y∈Rn

|f(x− y)|
(1 +R|y|) η

n

�n,η Mηf(x)

Mηf = M [|f |η]1/η . 

Proof. We follow the proof given in [6] and [12]. 
Step 1. We first assume that R = 1. Take a C1 function so that χB(1) ≤ ϕ̂ ≤ χB(2). Since f = ' ¤ f, we have

∂jf(x− y) = (∂jϕ) ∗ f(x− y) =

∫

Rn

∂jϕ(z)f(x− y − z) dz.

The inequality (1 + |y + z|) ≤ (1 + |y|)(1 + |z|) gives

|∂jf(x− y)|
(1 + |y|)n

η
≤

∫

Rn

|∂jϕ(z)|(1 + |z|)n
η · |f(x− y − z)|

(1 + |y + z|)n
η
dz

≤ sup
y

|f(x− y)|
(1 + |y|)n

η

∫

Rn

|∂jϕ(z)|(1 + |z|)n
η dz.

Thus we obtain the first inequality. 
Step 2. We continue to assume that R = 1. Let 0 < ± < 1 and x2Rn. Assume that jf(x)j  attains the minimum 

at x0 in the ball B(x, ± ). Since f(x)− f(x0) =
∫ 1

0
(x− x0) ·¢ ∇f((1− θ)x0 + θx) dθ , we have

|f(x)| ≤ |f(x0)|+ |f(x)− f(x0)|

≤
(

1

|B(δ)|
∫

B(x,δ)

|f(z)|η dz
) 1

η

+ δ sup
z∈B(x,δ)

|∇f(z)|.

Replacing x by x¡y, we have

|f(x− y)| ≤
(

1

|B(δ)|
∫

B(x,|y|+1)

|f(z)|η dz
) 1

η

+ δ sup
z∈B(1)

|∇f(x− y − z)|

≤
(
(1 + |y|)

δ

)n
η

Mηf(x) + δ sup
z∈B(1)

|∇f(x− y − z)|
(1 + |y + z|)n

η
· (1 + |y|)n

η (1 + |z|)n
η .

Dividing by (1 + |y|)n/η  and taking the supremum, we get

J := sup
y

|f(x− y)|
(1 + |y|)n

η
≤ δ−

n
η Mηf(x) + 2

n
η δ sup

y

|∇f(x− y)|
(1 + |y|)n

η
.

This combined with the first inequality yields

J ≤ δ−
n
η Mηf(x) + C0δJ

with C0 depending only on n and ´. Choosing ± so that C0δ = 1
2 , we obtain the second inequality. 

Step 3. We finally consider the general R > 0. Applying the result for R = 1 to the function fR−1(x) := f(x/R), 
and observing MηfR−1(x) = Mηf(x/R)  and so on, we obtain the desired result.  □
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Lemma 5.2. Let 0 < ´ < q ∙ p < 1 . Then

‖Mηf‖Mp,q � ‖f‖Mp,q .n ,p ,q ,´‖Mηf‖Mp,q � ‖f‖Mp,q .

Proof. By definition 

�Mηf�Mp,q
= sup

B
|B| 1p− 1

q �Mηf�Lq(B) = sup
B

[
|B| ηp− η

q

(∫

B

M [|f |η] qη
) η

q

] 1
η

.

Since M is bounded on Mp/η,q/η(Rn) by Theorem 3.2, we have

�Mηf�Mp,q
� sup

B

[
|B| ηp− η

q

(∫

B

(|f |η) q
η

) η
q

] 1
η

= sup
B

|B| 1p− 1
q

(∫

B

|f |q dx
) 1

q

,

which gives the boundedness of M´.  □

Lemma 5.3. Let 0 < q ∙ p < 1  and R > 0. If f2Mp,q(Rn) satisfies supp f̂ ⊂ B(0, R), then f ∈ L∞(Rn) 
with

‖f‖L∞ �n,p,q R
n
p ‖f‖Mp,q

. (5.1)

In addition, if 0 < q1 ∙ p1 < 1  and p/p1 = q/q1 < 1, then f2Mp1,q1(Rn) with 

‖f‖Mp1,q1
�n,p,q,p1

R
n
p − n

p1 ‖f‖Mp,q
. (5.2)

Proof. Step 1. To understand the idea of the proof let us begin with the case p = q and R = 1. Assume that 
f2Lp(Rn) satisfies f̂ ⊂ B(0, 1). Let B be a ball of radius 1. By Theorem 5.1 with 0 < ´ < p we have, for x2B 
and y2B, 

|f(x)| = sup
z∈B(0,2)

|f(y − z)| ≤ sup
y∈B(0,2)

3
n
η |f(y − z)|
(1 + |z|)n

η
� Mηf(y).

Taking the Lp(B) norms as a function of y, we get 

|B| 1p �f�L∞(B) � �Mηf�Lp(B).

Since the maximal operator is bounded on Lp/´ by Theorem 3.1, we get ‖f‖L∞(B) � ‖f‖Lp. Taking the supremum 
with B ranging over all balls of radius 1, we obtain (5.1) for p = q and R = 1. 

Step 2. We next assume that f2Mp,q(Rn) satisfies supp f̂ ⊂ B(0, 1). Replacing the Lp(B) by Lq(B) in the argument 
of Step 1, and choosing ´ so that 0 < ´ < q ∙ p < 1 , we have

|B| 1q �f�L∞(B) � �Mηf�Lq(B) ≤ |B|− 1
p+

1
q �Mηf�p,q � �f�p,q,

where the last inequality follows by Lemma 5.2. Taking the supremum with B ranging over all balls of radius 1, 
we obtain (5.1) with R = 1. 

Step 3. We consider the general R by the scaling fR−1(x) = f(x/R). Since FfR−1(ξ) =Rnf̂(Rξ) is supported 
on B(0, 1), we have
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‖f‖L∞ = ‖fR−1‖L∞ � ‖fR−1‖p,q = Rn/p‖f‖p,q,R
n
p ‖f‖p,q ,

where the last equality follows by Lemma 2.1. 
Step 4. Inequality (5.2) follows from (5.1). Indeed, we have

�f�Lq1 (B) ≤ �f�1−
q
q1

L∞ �f�
q
q1

Lq(B) � (R
n
p �f�p,q)1−

q
q1

(
|B|− 1

p+
1
q �f�p,q

) q
q1

,

which yields (5.2) by q/q1 = p/p1.  □

Theorem 5.4. (i) Let 0 < q ∙ p < 1 , 0 < r ∙ 1  and s2R. Then

Es
p,q,r(Rn) ⊂ Es

p,q,∞(Rn) ⊂ B
s−n

p∞,∞(Rn).

(ii) Let 0 < q ∙ p < 1 , 0 < r ∙ 1  and s2R. Then

N s
p,q,r(Rn) ⊂ B

s−n
p∞,r (Rn).

(iii) Let 0 < p < p1 < 1 , 0 < r ∙ 1 , s2R, s12R and s− n
p = s1 − n

p1
. Then

F s
p,∞(Rn) ⊂ F s1

p1,r(R
n).

(iv) Let 0< q ∙ p < p1 < 1 , p/p1 = q/q1(< 1), 0< r∙ 1 , s2R, s12R and s− n
p = s1 − n

p1
. Then

Es
p,q,∞(Rn) ⊂ Es1

p1,q1,r(R
n).

(v) Let 0 < p < p1 ∙ 1 , 0 < r ∙ 1 , s2R, s12R and s− n
p = s1 − n

p1
. Then

Bs
p,r(Rn) ⊂ Bs1

p1,r(R
n).

(vi) Let 0 < q ∙ p < p1 < 1 , p/p1 = q/q1(< 1), 0 < r ∙ 1 , s2R, s12R and s− n
p = s1 − n

p1
. Then

N s
p,q,r(Rn) ⊂ N s1

p1,q1,r(R
n).

Remark. The results related to Morrey spaces in Theorem 5.4 are obtained by Sawano-Tanaka [9], Sawano [5] 
and Sawano-Sugano-Tanaka [8] (see also [10]). 
Proof. In the proof we only estimate Áj¤f, since the estimate for Ã¤f can be dealt with similarly. 

(i) The first inclusion follows from lr ⊂ l∞. Let f ∈ Es
p,q,∞ and set G = supj∈N 2js|φj∗f j . Clearly |φj ∗ f | ≤ 2−jsG. 

By Lemma 5.3 we have

�φj ∗ f�∞ � 2
jn
p �φj ∗ f�p,q ≤ 2j(

n
p −s)�G�p,q,

which implies

sup
j∈N

2j(s−
n
p )�φj ∗ f�∞ ≤ �f�Es

p,q,∞ .

(ii) From Lemma 5.3 it follows that 

2j(s−
n
p )�φj ∗ f�∞ � 2j(s−

n
p ) · 2 jn

p �φj ∗ f�p,q = 2js�φj ∗ f�p,q,
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which gives ‖f‖Bs−n/p
∞,r

� ‖f‖N s
p,q,r. 

(iii) Let f ∈ F s
p,∞ and set G = supj∈N 2js|φj ∗ f |. Clearly |φj ∗ f | ≤ 2−jsG. By Lemma 5.3 we have

�φj ∗ f�∞ � 2
jn
p �φj ∗ f�p ≤ 2j(

n
p −s)�G�p.

Thus

2js1 |φj ∗ f | � min{2−j(s−s1)G, 2j(s1−s+n
p )�G�p} = min{2−j(n

p − n
p1

)G, 2j·
n
p1 �G�p}.

Applying Lemma 5.5 below with a = nr( 1p − 1
p1
) b = nr · 1

p1
A = Gr, and B = ‖G‖rp, we have

⎛
⎝�

j

2js1r|φj ∗ f |r
⎞
⎠

1
r

� G
p
p1 �G�1−

p
p1

p .

Taking the Lp1 norm yields ‖f‖F s1
p1,r

� ‖G‖p . 
(iv) We can proceed in the same way as in (iii) by replacing the Lp norm by the Mp,q norm. Thus 

H :=

⎛
⎝�

j

2js1r|φj ∗ f |r
⎞
⎠

1
r

� G
p
p1 �G�1−

p
p1

p,q = G
q
q1 �G�1−

q
q1

p,q .

Hence, with the assumption p1/p = q1/q, 

�H�Lq1 (B) ≤ �G�
q
q1

Lq(B)�G�1−
q
q1

p,q ≤ (|B|− 1
p+

1
q )

q
q1 �G�p,q = |B|− 1

p1
+ 1

q1 �G�Mp,q
,

which implies (iv). 
(v) By Lemma 5.3 we have

2js1�φj ∗ f�p1 � 2js1 · 2j(n
p − n

p1
)�φj ∗ f�p = 2js�φj ∗ f�p,

which gives (v). 
Item (vi) can be proved in the same way as (v), if we replace the Lp norm by the Mp,q norm.  □

Lemma 5.5. Let a, b, A, B be positive numbers. Then

∑
j∈Z

min{2−jaA, 2jbB} ≤ 2min{a,b}

log 2

(
1

a
+

1

b

)
A

b
a+bB

a
a+b .

Proof. We compare the sum in the lemma with

J :=

∫ ∞

0

min{At−a, Btb} dt

t
.

Decomposing (0, 1 ) into the union of (2 j, 2 j+1) with j2Z, we have

J =
∑
j∈Z

∫ 2j+1

2j
min{At−a, Btb} dt

t
≥

∑
j∈Z

(log 2)2−a min{A2−aj , B2bj}.
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On the other hand, changing the variables t = cs and taking c so that Ac¡a = Bcb, we have

J = Ac−a

∫ ∞

0

min{s−a, sb} ds

s
= A

b
a+bB

a
a+b

(
1

a
+

1

b

)
.

Since replacement of j by ¡ j changes the roles of a, A and those of b, B, we obtain the desired inequality.  □

6  Lifting property

As usual we define the seminorms in S (Rn); for N2N we set

qN (f) = max
|α|≤N

max
|β|≤N

sup
x∈Rn

|xβ∂αf(x)|.

For H2 S (Rn) we define the operator H (D) : S ′(Rn) → S ′(Rn) by

H(D)f = F−1(HF−1f). (6.1)

Lemma 6.1. Let 0 < q ∙ p < 1  and 0 < r ∙ 1 . Assume that a series {fj}j∈Z in S ′(Rn) satisfies 

{fj} ∈ Mp,q(Rn, lr) and 

supp f̂j ⊂ {ξ : |ξ| ≤ 2j},

and that {Hj}j∈Z  in S (Rn) satisfies

sup
j∈Z

qN (Hj(2
j · )) < ∞

for each N2N0. Then {Hj(D)fj} ∈ Mp,q(Rn, lr) with
(
sup
j∈Z

qN (Hj(2
j · ))

)
�{fj}�Mp,q(lr)Hj (D)f j Mp,q (lr ) n,p,q,r

with N = [n/´] + n + 2. 
Remark. This lemma also holds if Z is replaced by N, since we may apply the lemma to the case where fj = 0 

for j ∙ 0. 
The statement of Lemma 6.1 also holds if we replace Mp,q(Rn, lr) by lr(Mp,q(Rn)); the proof is based on (6.2) 

below. 
Proof. Let η = 1

2 min{q, r}. By Theorem 5.1 we have

|Hj(D)fj(x)| ≤
∫

Rn

|F−1Hj(y)|(1 + 2j |y|)n
η

|fj(x− y)|
(1 + 2j |y|)n

η
dy

� Mη[fj ](x)

∫

Rn

2−jn|F−1Hj(2
−jy)|(1 + |y|)n

η dy.

Choose N so that N ¸ n + 1 and N − n
η > n . Then 
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2−jn|F−1Hj(2
−jy)|(1 + |y|)N ≤ Cn,N

∑
|α|≤N

2−jn|yαF−1Hj(2
−jy)|

≤ Cn,N

∑
|α|≤N

(2π)|α|
∫

Rn

|∂α
ξ {Hj(2

jξ)}| dξ

≤ C �
n,NqN (Hj(2

j · ))
∫

Rn

(1 + |ξ|)−n−1 dξ.

Combining the above estimates, we have

|Hj(D)fj(x)| � qN (Hj(2
j · ))Mη[fj ](x).  (6.2)

As we proved Lemma 5.2, we can show that Theorem 3.4 also holds if M is replaced by the powered Hardy-
Littlewood operator M´. Hence the lemma follows from (6.2).  □

Theorem 6.2. Let 0 < q ∙ p < 1 , 0 < r ∙ 1 , s2R and α ∈ Nn
0 . Then the following linear operators are 

bounded:  

Dα : Es
p,q,r(Rn) → Es−|α|

p,q,r (Rn), Dα : Ės
p,q,r(Rn) → Ės−|α|

p,q,r (Rn),

Dα :N s
p,q,r(Rn) → N s−|α|

p,q,r (Rn), Dα : Ṅ s
p,q,r(Rn) → Ṅ s−|α|

p,q,r (Rn).

Remark. A Generalization of this theorem is found in Sawano-Tanaka [9]. 
Proof. We give the proof only for the non-homogeneous Triebel-Lizorkin spaces; we can deal with the other spaces 
similarly. Set ϕj = φj−1 + φj + φj+1 . Then

2j(s−|α|)φj ∗ (Dαf) = 2j(s−|α|)ϕj ∗ φj ∗ (Dαf) = Hj(D)[2sjφj ∗ f ]

with Hj(ξ) = (2πξ/2j)αϕ̂0(ξ/2
j). Since Hj(2

jξ) = (2πξ)αφ̂0(ξ), which is independent of j, we conclude that 
D® is bounded by Lemma 6.1.   □

We say that a(» ) is a symbol of order m if a(» ) satisfies

|∂α
ξ a(ξ)| ≤ Cα�ξ�m−|α|

for every ®2N0
n. A typical example of a(» ) is �ξ�m := (1 + |ξ|2) 1

2 with �ξ� = (1 + |ξ|2)12. We note that the operator a(D) can be 
defined as in (6.1), since g !ag is a bounded operator on S (Rn). 

Theorem 6.3. Let 0 < q ∙ p < 1 , 0 < r ∙ 1  and s2R. If a(» ) is a symbol of order m, then the operators 

a(D) : Es
p,q,r(Rn) → Es−m

p,q,r (Rn), a(D) : N s
p,q,r(Rn) → N s−m

p,q,r (Rn)

are bounded. 
Proof. We write

2j(s−m)φj ∗ (a(D)f) = 2j(s−m)ϕj ∗ φj ∗ (a(D)f) = Hj(D)(2jsφj ∗ f)
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with Hj(ξ) = 2−mja(ξ)ϕj(ξ). Since the derivatives of Hj(2
jξ) = 2−mja(2jξ)ϕ0(ξ) is given by

∂α
ξ (Hj(2

jξ)) =
∑
β≤α

(
α

β

)
2(|β|−m)j(∂βa)(2jξ)(∂α−βϕ0)(ξ),

and they are supported on 14 ≤ |ξ| ≤ 4, we have

|∂α
ξ (Hj(2

jξ))| �
∑
β≤α

2(|β|−m)j�2jξ�m−|β| � 1,

since 2j |ξ| ≤ �2jξ� ≤ {(2·2j |ξ|)2+(2j |ξ|)2} ≤ 3·2j |ξ|1
22j |ξ| ≤ �2jξ� ≤ {(2·2j |ξ|)2+(2j |ξ|)2} ≤ 3·2j |ξ|. Thus we conclude the boundedness of a(D) by applying 

Lemma 6.1 for the Triebel-Lizorkin space  and the remark of Lemma 6.1 for the Besov space. 
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