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Abstract

We have investigated the dynamic nature of the adjustment process in a Cournot
model with linear demand and constant marginal costs. In particular, we consid-
ered two types of models. First, we formulated a dynamic adjustment process
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1 Introduction

In his seminal work, Cournot (1838, Chapter 7) constructed the theory of oligopoly

in a mathematical framework. His model captured the strategic interactions among a

small number of firms in a market for a single homogeneous commodity; each firm tries

to maximize its profit by taking the output choices of the other firms as given. The

equilibrium point in his model is defined as the intersection of the reaction functions.

Such an equilibrium notion is in essence identical with the Nash equilibrium concept.

In this sense Cournot anticipated Nash (1951) more than a century ago. There is no

disagreement on the point that Cournot’s oligopoly model is the classic instance of a

noncooperative game in economics.

In addition to the development of the new equilibrium concept, he formulated an

adjustment process for his duopoly model. By using a graphical argument he showed

that the equilibrium point is stable under the assumption of monotone reaction func-

tions. His graphical analysis aroused considerable interest in the stability problem and

yielded a large number of papers; see, for instance, Theocharis (1960), Fischer (1961),

and Hahn (1962). Furthermore, Okuguchi (1976) provides a comprehensive review of

oligopoly models.

More recently, the development of chaos theory in discrete-time dynamical systems

has stimulated the reconsideration on the dynamic nature of the Cournot model. In the

pioneering paper Rand (1978) rigorously showed the emergence of cyclical and chaotic

dynamics in the discrete-time adjustment process when unimodal reaction functions

are considered. Following Rand, Puu (1991) showed that reaction functions are uni-

modal by assuming linear cost functions and a hyperbolic demand function. Moreover,

Kopel (1996) obtained unimodal reaction functions by introducing nonlinear cost func-

tions and a linear demand function. These papers are closely related to each other

in that they used coupled oscillators in discrete dynamical systems to demonstrate
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the occurrence of complex dynamics. These papers have been further developed by

many authors. See, for example, Bischi and Kopel (2001), Bischi and Lamantia (2002).

Further contributions were presented in Puu and Sushko (2002).

Unfortunately, however, very little attention has been paid to the investigation of

the complex duopoly dynamics in continuous-time models so far. The reason is due to

a lack of analytical methods for establishing the existence of continuous chaos, while

it is well known that specific dynamical systems, such as the Lorenz system (1963)

and the Rössler system (1976), display chaotic behavior for certain values of system

parameters. The Lorenz system is described by a three-dimensional system of ordinary

differential equations representing fluid convection in the atmosphere. Moreover, the

Rössler system is also expressed by a three-dimensional system of ordinary differential

equations, which is applied to the analysis of chemical reactions. It is astonishing that

even these simple and deterministic systems could exhibit complex and unpredictable

behaviors in the continuous-time scale.

The purpose of the present paper is twofold. The first aim is to formulate a ba-

sic model of the Cournot adjustment process and establish the global stability of the

Cournot-Nash equilibrium by using a system of ordinary differential equations.

The second aim is to investigate the possibility of persistent fluctuations in output

within the Cournot adjustment process under continuous time. Figure 1 illustrates the

evolution of market shares in the global smartphone market. At a glance, it is evident

that the market share of each company fluctuates. Additionally, it is also apparent that

the market rankings occasionally change. For example, Samsung held a market share

of just 2.3% in April 2010, but this figure increased steadily over time. By August

2023, Samsung had surpassed a 25% share, becoming the market leader. However,

since March 2023, Apple has taken the lead, with Samsung falling to second place.

These observations highlight that market shares fluctuate over time. Such dynamics
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Figure 1: The evolution of market shares in the global smartphone market

are not unique to the mobile device market; similar patterns can also be observed in

other industries, such as automobiles and cigarette. On this point, see Mazzucato and

Semmler (1999) and Gallet and List (2001).

The present paper shares the same theoretical orientation as the work of Furth

(2009). In his paper, Furth provides an important and clear result: no cycles appear

in the homogeneous Cournot oligopoly model with quantity adjustments. In contrast

to Furth, however, we explore the emergence of limit cycles and chaotic attractors in

homogeneous Cournot duopoly. Since his analysis is completely correct in the math-

ematical context, for our purpose, we introduce two ‘alternative’ elements from the

economic point of view. The elements are discrete time lags and a growth rate rule

for the adjustment process. These elements yield a system of nonlinear delay differen-

tial equations, which is essentially identical with a model of Shibata and Saito (1980).

They investigate the population dynamics of two competing species with fixed lags
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and showed the appearance of limit cycles and chaotic attractors by means of numeri-

cal simulations. Their model is a significant contribution to the field of mathematical

biology.

Finally, we make a remark on the modeling of discrete time lags in the Cournot

model. It has already been studied by Howroyd and Russell (1984) and Russell, Rickard,

and Howroyd (1986).1 They derive analytical results on the stability conditions by

investigating the systems of linear delay differential equations. The economic interpre-

tation of their results suggests that the equilibrium point is stable when the delays are

small. By means of numerical simulations we can obtain similar results in our model.

However, our model differs from theirs in that we can observe numerically periodic

cycles and chaotic attractors in our system. This is because we deal with the system

of nonlinear delay differential equations, while they examine the linear systems.

2 The basic framework

We consider a Cournot duopoly model. Two firms produce a homogeneous product

with output levels x1 and x2. Let the market demand function be given by

p = a− b(x1 + x2), a > 0, b > 0, (1)

where p is the price of output. Assuming constant marginal cost ci for firm i (i = 1, 2),

we obtain the profit functions of the two firms:

π1 = [a− b(x1 + x2)]x1 − c1x1, (2)

π2 = [a− b(x1 + x2)]x2 − c2x2. (3)

As usual we assume that each firm maximizes its profit taking the quantity supplied

by the opponent as given. Consequently, the profit maximization conditions result in

1 Chiarella and Khomin (1996) also examine the stability properties of the Cournot oligopoly model
by using a distributed lag model, which is a generalization of the discrete lag model. They apply the
Hopf bifurcation theorem to study the birth of limit cycles from the Cournot-Nash equilibrium point.
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the following best-reaction functions:

x1 = R1(x2) = −1

2
x2 +

a− c1
2b

(4)

x2 = R2(x1) = −1

2
x1 +

a− c2
2b

(5)

These equations clearly show that an optimal quantity choice for firm i depends on

the output level of the opponent. From (4) and (5), we find a unique Cournot-Nash

equilibrium, which corresponds to the intersection point for the reaction curves:

x∗1 =
a− 2c1 + c2

3b
, x∗2 =

a+ c1 − 2c2
3b

. (6)

In order to ensure positive values of x∗1 and y∗2 we require the following:

Assumption 1. a− 2c1 + c2 > 0 and a+ c1 − 2c2 > 0.

In studying the dynamic duopoly model, we assume that each firm controls the

growth rate of its output according to the difference between its profit maximizing

output and its actual output:

ẋ1
x1

= α1(R1(x2)− x1), α1 > 0, (7a)

ẋ2
x2

= α2(R2(x1)− x2), α2 > 0 (7b)

where αi(i = 1, 2) indicates an adjustment speed parameter, which is a positive con-

stant.

With this assumption and the reaction functions given by (4) and (5), we obtain a

nonlinear dynamical system of the form:

ẋ1 = α1

(
−x1 −

1

2
x2 +

a− c1
2b

)
x1 (8a)

ẋ2 = α2

(
−1

2
x1 − x2 +

a− c2
2b

)
x2 (8b)
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Analysis of the dynamical system (8) yields the phase diagram shown in Figure 2.

The slope of the reaction function of firm 1 is steeper than that of the reaction function

of firm 2. Notice that a − c2 > (1/2)(a − c1) and a − c1 > (1/2)(a − c2) by virtue of

Assumption 1. Thus the reaction function of firm 1 must cut the reaction function of

firm 2 from above at the Cournot-Nash equilibrium.

Two reaction functions divide the positive orthant of the (x1, x2)-plane into four

regions. The actual motion of the system can be approximated by the arrows of motion.

This diagram tells us that no matter where the initial output vector lies within R2
++,

all trajectories move toward the Cournot-Nash equilibrium point.

To find the stationary points of the above system, we solve ẋ1 = 0 and ẋ2 = 0 simul-

taneously. Then we obtain four stationary points: E0(0, 0), E1((a−c1)/(2b), 0), E2(0, (a−

c2)/(2b)), and E3(x
∗
1, x

∗
2). Note that while point E3 is a Cournot-Nash equilibrium, the

remaining three points do not satisfy the definition of Nash equilibrium. At least one

firm has an incentive to change its output decision on these non-Nash equilibrium

points.

We now turn to the local stability analysis of the four stationary points in turn.

The local stability of a stationary point is determined by the characteristic roots of the

Jacobian matrix evaluated at the point.

(i) E0(0, 0): We obtain the Jacobian matrix evaluated at E0,

J0 =

[
α1(a− c1)/(2b) 0

0 α2(a− c2)/(2b)

]
. (9)

Since J0 is a diagonal matrix, it is easily checked that the characteristic roots of J0 are

λ1 = α1(a− c1)/(2b) > 0 and λ2 = α2(a− c2)/(2b) > 0. This means that E0 is locally

unstable.

(ii) E1((a− cX)/(2b), 0): The Jacobian matrix evaluated at E1 is

J1 =

[
−α1(a− c1)/(2b) −(1/2)α1(a− c1)/(2b)

0 α2(a− c2)/(2b)

]
. (10)
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Figure 2: The phase diagram of the basic model

Since the determinant of the Jacobian matrix is negative, the matrix has two real

distinct characteristic roots of opposite signs. Therefore E1 is a saddle point. The

motion is always away from point E1 except for the stable arm of the saddle. In this

case the positive part of the x1-axis itself is the stable arm. If the initial point lies on

the x1-axis, the trajectory approaches point E1 as t → +∞.

(iii) E2(0, (a − c2)/(2b)): In the same way, we can show that E2 is a saddle point.

The motion is always away from point E2 except for the stable arm of the saddle. In

this case the positive part of the x2-axis itself is the stable arm. If the initial point lies

on the x2-axis, the trajectory approaches point E2 as t → +∞.

(iv) E3(x
∗
1, x

∗
2): To make sure of the stability properties of the system we evaluate

the Jacobian matrix at the Cournot-Nash equilibrium

J =

[
−α1x

∗
1 −(1/2)α1x

∗
1

−(1/2)α2x
∗
2 −α2x

∗
2

]
, (11)
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and this yields the characteristic equation

P (λ) = λ2 + b1λ+ b2 = 0, (12)

where,

b1 = α1x1 + α2x2, (13)

b2 = (3/4)α1x1α2x2. (14)

From the above discussion, we can conclude that the Routh-Hurwitz conditions

(b1 > 0, b2 > 0), which are the necessary and sufficient conditions for local asymptotic

stability, are always satisfied. Thus we have the following:

Proposition 1 The steady state is locally asymptotically stable for any α1, α2 > 0.

In the remainder of this section, we show the global stability of the Cournot-Nash

equilibrium by using Lyapunov’s second method, which is more rigorous than the phase

diagram analysis. Consider a dynamical system ẋ = f(x), x ∈ Rn. A vector x∗ is a

stationary point of the dynamical system if and only if f(x∗) = 0. Lyapunov’s second

theorem on stability asserts that x∗ is asymptotically stable if a scalar function V (x)

defined on some subset W ⊂ Rn satisfies the following conditions

(i) V (x∗) = 0 and V (x) > 0 for x ̸= x∗,

(ii) V̇ (x) < 0 for all x ∈ W − {x∗}.

The theorem provides a strict and useful tool to study global stability.2 In fact, we

can obtain the following proposition:

Proposition 2 The Cournot-Nash equilibrium is globally asymptotically stable in R2
++.

Proof: Consider the following candidate for the Lyapunov function:

2 For more details, see Guckenheimer and Holmes (1997) or Perko (1996).
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V (x1, x2) = (x1 − x∗1)
2 + (x2 − x∗2)

2 + (x1 − x∗1)(x2 − x∗2). (15)

We shall check whether the above function satisfies two conditions concerning the

Lyapunov function.

First, notice that (15) can be transformed into

V (x1, x2) =
3

2

[
1√
2
(x1 − x∗1) +

1√
2
(x2 − x∗2)

]2
+

1

2

[
1√
2
(x1 − x∗1)−

1√
2
(x2 − x∗2)

]2
.

(16)

Accordingly, we can recognize that V (x∗1, x
∗
2) = 0 and V (x1, x2) > 0 for (x1, x2) ̸=

(x∗1, x
∗
2).

Second, by differentiating (15) with respect to time, we can obtain

V̇ (x1, x2) = ẋ1[2(x1 − x∗1) + (x2 − x∗2)] + ẋ2[(x1 − x∗1) + 2(x2 − x∗2)]. (17)

Note that (8) can be rearranged to

2ẋ1 = −α1[2(x1 − x∗1) + (x2 − x∗2)]x1 (18a)

2ẋ2 = −α2[(x1 − x∗1) + 2(x2 − x∗2)]x2. (18b)

Thus, substituting (18) into (17) gives

V̇ = −2(ẋ1)
2

α1x1
− 2(ẋ2)

2

α2x2
< 0 for all (x1, x2) ∈ R2

++ − {x∗}. (19)

From the above results, we can conclude that (15) is a suitable Lyapunov function.

In addition to this, we can choose W = R2
++. This completes the proof.

Remark 1 When analysing the Cournot adjustment process, it is usual to assume an

incremental-change rule, which can be specified as follows

ẋ1 = α̃1(R1(x2)− x1), (20)
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ẋ2 = α̃2(R2(x1)− x2). (21)

Nevertheless, we have adopted a growth-rate rule, specified in (7). The reason why we

use the growth-rate rule is that it has an important advantage over the incremental-

change rule from an economic point of view: non-negative restrictions on the output

levels are automatically satisfied for all t > 0 under the growth-rate rule. To verify this

property we integrate (7a) and (7b) with respect to t, and hence obtain the following

expressions:

x1(t) = x1(0) exp

[∫ t

0
(R1(x2(s))− x1(s))ds

]
, (22)

x2(t) = x2(0) exp

[∫ t

0
(R2(x1(s))− x2(s))ds

]
. (23)

These equations prove clearly that the non-negativity of x1(t) and x2(t) is fulfilled for

all t > 0 as long as initial conditions (x1(0), x2(0)) are non-negative.

Remark 2 It should be noted that the growth-rate rule is equivalent to the incremental-

change rule if we assume that the adjustment speed parameters considered in (20) and

(21) are linear functions such that α̃1 = v1x1 and α̃2 = v2x2, where vi is a constant

coefficient (i = 1, 2). On this subject, see Bischi and Lamantia (2002, pp. 200–201).

Remark 3 Excepting the Cournot-Nash equilibrium point, there exist three steady-

state points in this system: (0, 0), ((a − c1)/(2b), 0), and (0, (a − c2)/(2b)). In each

point at least one of the outputs is zero. This is hardly consistent with the realistic

situation, so we restrict our attention to the Cournot-Nash equilibrium hereafter.

3 N-firm Cournot oligopoly and global stability

In this section we deal with an n-firm oligopoly model. The asymptotic behavior of the

stationary point is examined via the method of the Lyapunov function.
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The market price is given by

p = a− b(x1 + x2 + · · ·+ xn), a > 0, b > 0, (24)

and we assume that the cost function of firm i is linear,

Ci(xi) = cixi, ci > 0. (25)

Using these functions, we obtain the profit function of firm i,

πi = [a− b(x1 + x2 + · · ·+ xn)]xi − cixi (26)

As mentioned in the previous section, we assume the Cournot conjecture: any firm

believes that all its rivals’ output levels remain constant in response to a change in its

own output level. Moreover, we assume that any firm is rational in the sense that it

maximizes its own profit. Thus we can obtain the reaction function of firm i,

xi = Ri

∑
j ̸=i

xj

 =
a− ci
2b

− 1

2

∑
j ̸=i

xj (27)

The system of equations

xi =
a− ci
2b

− 1

2

∑
j ̸=i

xj , (i = 1, · · · , n), (28)

defines the Cournot-Nash equilibrium. The above system can be rewritten as

1

2
xi +

1

2

n∑
j=1

xj =
a− ci
2b

, (i = 1, · · · , n), (29)

which leads to
n∑

j=1

xj =
1

n+ 1

na−
∑n

j=1 cj

b
. (30)

Thus we can obtain the unique Cournot-Nash equilibrium point (x∗1, x
∗
2, · · · , x∗n), where

x∗i =
a− ci
2b

− 1

n+ 1

na−
∑n

j=1 cj

b
, (i = 1, · · · , n). (31)
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Let us now turn to the study of dynamic properties of the Cournot model. We

assume the same type of adjustment process as in the preceding section:

ẋi = αi

Ri

∑
j ̸=i

xj

− xi

xi, (32)

where αi is a positive constant and called the speed of adjustment of firm i. This

equation means that each firm adjusts the actual level of output to the desired level of

output.

Note that the stationary state of the above system is given by xi = Ri(
∑

j ̸=i xj),

i = 1, · · · , n. This fact implies that the stationary state exactly corresponds to the

Cournot-Nash equilibrium.

Applying Lyapunov’s second method, we can obtain the following:

Proposition 3 The Cournot-Nash equilibrium is globally asymptotically stable in Rn
++.

Proof To apply Lyapunov’s second method we have to check the two conditions men-

tioned in Section 2. The function

V (x1,x2, · · · , xn) = (x1 − x∗1)
2 + (x2 − x∗2)

2 + · · ·+ (xn − x∗n)
2

+ (x1 − x∗1)(x2 − x∗2) + (x1 − x∗1)(x3 − x∗3) + · · ·+ (x1 − x∗1)(xn − x∗n)

+ (x2 − x∗2)(x3 − x∗3) + (x2 − x∗2)(x4 − x∗4) + · · ·+ (x2 − x∗2)(xn − x∗n)

+ (x3 − x∗3)(x4 − x∗4) + (x3 − x∗3)(x5 − x∗5) + · · ·+ (x3 − x∗3)(xn − x∗n)

+ · · ·+ (xn−1 − x∗n−1)(xn − x∗n).

(33)

is a candidate Lyapunov function. Since it is a quadratic form, we can rewrite in the

matrix form as follows:

V (x1, x2, · · · , xn) = zTAz, (34)

where the superscript T is a transpose operator,

ẑT = (x1 − x∗1, x2 − x∗2, · · · , xn − x∗n),
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A =


1 1/2 1/2 . . . 1/2

1/2 1 1/2 . . . 1/2
1/2 1/2 1 . . . 1/2
...

...
...

. . .
...

1/2 1/2 1/2 . . . 1

 .

First, we shall verify that V (x∗1, x
∗
2, · · · , x∗n) = 0 and V (x1, x2, · · · , xn) > 0 for all

(x1, x2, · · · , xn) ̸= (x∗1, x
∗
2, · · · , x∗n). From the definition, it is clear that V (x∗1, x

∗
2, · · · , x∗n) =

0. Let |Ak| be a leading principal minor of order k for k = 1, 2, · · · , n. That is,

|Ak| =

∣∣∣∣∣∣∣∣∣∣∣

1 1/2 1/2 · · · 1/2
1/2 1 1/2 · · · 1/2
1/2 1/2 1 · · · 1/2
...

...
...

. . .
...

1/2 1/2 1/2 · · · 1

∣∣∣∣∣∣∣∣∣∣∣
=

(
1

2

)k

∣∣∣∣∣∣∣∣∣∣∣

2 1 1 · · · 1
1 2 1 · · · 1
1 1 2 · · · 1
...

...
...

. . .
...

1 1 1 · · · 2

∣∣∣∣∣∣∣∣∣∣∣


k (35)

To the first row we add all the rows except the first and we have

|Ak| =
(
1

2

)k

(k + 1)

∣∣∣∣∣∣∣∣∣∣∣

1 1 1 · · · 1
1 2 1 · · · 1
1 1 2 · · · 1
...

...
...

. . .
...

1 1 1 · · · 2

∣∣∣∣∣∣∣∣∣∣∣


k (36)

Then we subtract the first row from the all the rows except the first and obtain an

upper triangular matrix. With some rearrangement, we arrive at the conclusion that

|Ak| = (1/2)k(k + 1) > 0 for k = 1, 2, · · · , n. This means that V is positive definite,

i.e., V (x1, · · · , xn) > 0 for all (x1, · · · , xn) ̸= (x∗1, · · · , x∗n). 3

To check the second condition for Lyapunov’s second theorem, we take the derivative

3 A necessary and sufficient condition for a symmetric matrix A to be positive definite is that the deter-
minant of every leading principal submatrix be positive. On this point, see Hoy, Livernois, McKenna,
Rees, and Stengos (2001, Chapter 10.3), for example.
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of V with respect to time:

V̇ (x1, x2, · · · , xn) = 2(x1 − x∗1)ẋ1 + 2(x2 − x∗2)ẋ2 + · · ·+ 2(xn − x∗n)ẋn

+ ẋ1(x2 − x∗2) + ẋ1(x3 − x∗3) + · · ·+ ẋ1(xn − x∗n)

+ (x1 − x∗1)ẋ2 + (x1 − x∗1)ẋ3 + · · ·+ (x1 − x∗1)ẋn

+ ẋ2(x3 − x∗3) + ẋ2(x4 − x∗4) + · · ·+ ẋ2(xn − x∗n)

+ (x2 − x∗2)ẋ3 + (x2 − x∗2)ẋ4 + · · ·+ (x2 − x∗2)ẋn

+ ẋ3(x4 − x∗4) + ẋ3(x5 − x∗5) + · · ·+ ẋ3(xn − x∗n)

+ (x3 − x∗3)ẋ4 + (x3 − x∗3)ẋ5 + · · ·+ (x3 − x∗3)ẋn

+ · · ·+ ẋn−1(xn − x∗n) + (xn−1 − x∗n−1)ẋn.

= ẋ1[2(x1 − x∗1) + (x2 − x∗2) + · · ·+ (xn − x∗n)]

+ ẋ2[(x1 − x∗1) + 2(x2 − x∗2) + · · ·+ (xn − x∗n)]

+ · · ·+ ẋn[(x1 − x∗1) + (x2 − x∗2) + · · ·+ 2(xn − x∗n)] (37)

Note that the adjustment process governed by (32) can be transformed into

ẋi = −1

2
αi

∑
j ̸=i

(xj − x∗j ) + 2(xi − x∗i )

xi, i = 1, 2, · · · , n. (38)

Substituting (38) into (??) gives

V̇ (x1, x2, · · · , xn) = −2(ẋ1)
2

α1
− 2(ẋ2)

2

α2
−· · ·− 2(ẋn)

2

αn
< 0 for all x ∈ Rn

++−{x∗} (39)

From the above arguments, we can say that V is a Lyapunov function of the ad-

justment process. This completes our proof.

4 A modified model with time lags

In this section we shall develop the previous analysis by introducing discrete time lags,

which are induced by the inherent properties of production activities. There are sev-

eral reasons for the existence of time lags. First of all, firms must collect an enormous
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amount of data to analyze the state of the market. Such an information collecting

process needs time. Second, the decision process is also time-consuming; for example,

alternative plans are considered extensively and thoroughly, and the consequences are

evaluated carefully and completely. Finally, firms are engaged in the implementation

process. They must flawlessly execute the designed plans. Since in reality they are

hierarchical organizations, which have many different divisions, departments, and sec-

tions, they devote their time to the task of coordinating every section and activating

the organization as a whole. These facts suggest that the time lags in the adjustment

process are unavoidable in the real world.

We shall consider the following system of delay differential equations:

ẋ1(t) = α1(R1(x2(t− l1))− x1(t− τ1)),

= α1

(
−x1(t− τ1)−

1

2
x2(t− l1) +

a− c1
2b

)
x1(t) (40a)

ẋ2(t) = α2(R2(x1(t− l2))− x2(t− τ2))

= α2

(
−1

2
x1(t− l2)− x2(t− τ2) +

a− c2
2b

)
x2(t) (40b)

where τi is a time lag that firm i needs in information processing regarding its own

situation, and li is a time lag that firm i suffers in information processing concerning

the movements of the rival firm.

This type of model was investigated by Howroyd and Russell (1984) and Russell,

Rickard, and Howroyd (1986). While our model shares many common elements with

their models, we have to emphasize a key difference that we believe to be of crucial

importance. That is, unlike their models, our model includes a nonlinear relationship,

which is due to the assumption of the growth-rate rule regarding the adjustment process.

This feature, therefore, requires us to apply nonlinear dynamical systems theory to our

model. In particular, we concentrate our attention on whether our system can generate

the endogenous and perpetual fluctuations in the duopoly market.
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Let us now start our analysis of system (40). The model to consider here is pre-

cisely identical to a model developed by Shibata and Saito (1980).4 Their model is

an interesting contribution to the field of mathematical biology. They investigated the

population dynamics of two competing species with fixed time lags and showed the

appearance of limit cycles and chaotic attractors by means of numerical simulations.

Following Shibata and Saito, we hereafter resort to numerical experiments to ex-

amine the dynamic properties of our system. This is because the qualitative analysis

of delay differential equations is quite difficult. We set the following parameter values:

a = 3, b = 1, c1 = c2 = 1,

α1 = 2, α2 = 2, τ2 = 0.88, l1 = 0.31, l2 = 0.29.

Moreover, the following set of initial conditions are assumed:

x1(s) = 0.8 for − l1 ≤ s ≤ 0, x2(s) = 0.8 for − l2 ≤ s ≤ 0.

Figures 3–6 illustrate the emergence of a period-doubling route to chaos in our

system. In these figures we show the projections of the solutions of our system on the

(lnx1, lnx2)-plane and the power spectra of x1(t) for different values of τ1.

Figure 3 is obtained by fixing τ1 = 0.9. Note that we plot only the final trajectory

by excluding the transient behavior. Figure 3A displays a limit cycle, whose phase flow

moves in a clockwise direction. The motion is periodic and persistent. In Figure 3B

show a basic frequency, which corresponds to the highest peak in the power spectrum

at f0 = 0.0016.

Increasing the value τ1 further to 0.95, we can obtain Figure 4. Here we can see

that the limit cycle observed in Figure 3 loses its stability and a period-2 cycle with

two peaks and two troughs per cycle appears around it. This situation is confirmed in

4 Strictly speaking, there is a difference between our model and theirs. While we consider four time
lags in our Cournot adjustment model, they introduce two time lags in their population dynamics
model. In terms of our model, they assume that l1 = l2 = 0.
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Figure 3: Limit cycle: τ1 = 1.33

Figures 4A.5 Furthermore, Figure 4B shows that the bifurcation doubles the number

of sharp frequency components.

Figure 4: Period-2 cycle: τ1 = 1.25

When τ1 = 0.95 is increased to 0.975, the system exhibits a period-4 cycle as

5 At first sight the trajectory seems to cross itself again and again. The self-intersection is, how-
ever, an artifact of the projection onto the (ln x1, lnx2) plane. In the full dimensional state space no
self-intersections occur. This property applies to the below figures.
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seen in Figure 5. In Figure 5A we depict the projection of the period-4 cycle onto

the (lnx1, lnx2) plane. The period-4 cycle has four peaks and four troughs within a

cycle. Figure 5B shows that the bifurcation doubles the number of sharp frequency

components again.

Figure 5: Period-4 cycle: τ1 = 1.3

A more interesting state arises when τ1 is increased from 0.975 to 1.1: Figure 6 shows

a strange attractor in our system. In Figure 6A we observe complex behavior at first

glance. In Figure 6B displays the coexistence of sharp peaks and the broad background,

which is a noteworthy feature in our numerical results. This type of strange attractors is

named ‘phase coherence’ by Farmer, Crutchfield, Froehling, Packard, and Shaw (1980).

As demonstrated in their paper, both the Rössler attractor and the Lorenz attractor

are famous examples of phase coherence. In order to convince the exact evidence for

deterministic chaos, we examine the Lyapunov characteristic exponents, which measure

the rates of divergence or convergence of orbits starting from nearby initial conditions.

Any system containing at least one positive Lyapunov characteristic exponent is said to

be chaotic since it has sensitive dependence on initial conditions. In fact, we estimate
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that the largest Lyapunov exponent is 1.42 when τ1 = 1.1.6 This result therefore

suggests the presence of chaos in our numerical example.

Figure 6: Chaotic attractor: τ1 = 1.6

Let us now attempt to extend our numerical examination into the adjustment speed;

we choose α1 as a new bifurcation parameter and fix the parameter values as:

a = 3, b = 1, c1 = c2 = 1,

α2 = 2.0, τ1 = 1.58, τ2 = 0.88, l1 = 0.31, l2 = 0.29.

Again we can observe a period doubling route to chaos in the case of α1. With Figure

7 we provide a bifurcation diagram with respect to α1. We compute the time series

of x1(t) with a set of initial conditions for a given value α1, and then plot the local

maximum and minimum values of the time series of x1 as a function of the parameter

α1 being varied. This figure shows a clear impression of the period doubling bifurcation

cascade when α1 is increased from 1.3 to 2.0.

6 In this case, we used the Sano-Sawada method to compute the largest Lyapunov exponent. The
method is able to determine the spectrum of several Lyapunov exponents from the observed time series
of a single variable. On this point, see Sano and Sawada (1985).
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Figure 7: Bifurcation diagram with respect to α1 ∈ [1.3, 2.0]

From the above numerical simulations, we have two important observations about

the dynamic adjustment process. First, an increase in the time lag τ1 could be a destabi-

lizing factor; If firm 1 requires a long delay in information processing, the Cournot-Nash

equilibrium loses its stability and yields complex dynamics. Second, an increase in the

adjustment speed α1 also could destabilize the market dynamic behavior. This result

implies that a rapid response of firm 1 leads to chaotic fluctuations in the market.

The reason is explained intuitively as follows. Notice that firm 1 suffers time delays in

collecting, evaluating, and sharing the information. If the time lags of information are

sufficiently long, the firm tends to make improper decisions by using the old and unsuit-

able information. In this circumstance, it is no wonder that the adjustment process in

the duopoly market could generate persistent oscillations and even complex dynamics.

21



5 Conclusion

We have investigated the dynamic nature of the adjustment process by adopting a

Cournot model with linear demand and constant marginal costs. In particular, we

considered two types of models. First, we formulated a dynamic adjustment process

without time lags. In this case we established the local and the global stability of

the Cournot-Nash equilibrium. Second, we examined a dynamic adjustment process

with four time lags. In this process we observed that irregular and chaotic fluctuations

could emerge in the duopoly market by applying the results of Shibata and Saito (1980).

Moreover, in the second type model we detected the period-doubling routes to chaos

with respect to the time delay and the adjustment speed.

The comparison between the results of the two models shows that the introduction

of time lags in the adjustment process changes the dynamic properties of the Cournot-

Nash equilibrium substantially. In particular, our numerical simulations indicate that

the existence of time lags could be a destabilizing factor. From the practical point of

view, there is no doubt that time lags are inherent and unavoidable in the adjustment

process. Consequently, this fact leads us to the conclusion that economists must pay

much more attention to the lag structure in analyzing the dynamic behavior of the

economy. We hope that this paper will inspire further research efforts in microeconomic

dynamics.
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