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Abstract: A game is solvable if the set of Nash equilibria is nonempty and inter-

changeable. A pairwise solvable game is a two-person symmetric game in which any

restricted game generated by a pair of strategies is solvable. We show that the set

of equilibria in a pairwise solvable game is interchangeable. Under a quasiconcavity

condition, we derive a complete order-theoretic characterization and some topolog-

ical sufficient conditions for the existence of equilibria, and show that if the game is

finite, then an iterated elimination of weakly dominated strategies leads precisely

to the set of Nash equilibria, which means that such a game is both solvable and

dominance solvable. All results are applicable to symmetric contests, such as the

rent-seeking game and the rank-order tournament, which are shown to be pairwise

solvable. Some applications to evolutionary equilibria are also given.
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1 Introduction

Nash (1951) calls a strategic game solvable if the set of equilibria is nonempty and interchange-

able, which means that it is precisely equal to the Cartesian product of sets of strategies, one

for each player.1 Moulin (1979), meanwhile, calls a game dominance solvable if for each player

the strategies that survive the iterated elimination of weakly dominated strategies are all equiv-

alent.2 In this paper, we examine the consequences of requiring that “smaller components”

of the game be solvable in the sense of Nash. Focusing on two-person symmetric games, this

requirement leads to the notion of a pairwise solvable game. We show that pairwise solvable

games not only have a number of notable properties, but also accommodate many games that

frequently appear in applications. In particular, we establish a link between solvability and the

dominance solvability. Under a quasiconcavity condition, any finite pairwise solvable game is

shown to be dominance solvable.

A two-person symmetric game is pairwise solvable if any 2×2 game generated by a pair of

strategies is solvable in the sense of Nash. Noting that any 2 × 2 symmetric game has a pure

strategy Nash equilibrium, it follows that the restricted game is solvable if and only if the set

of equilibria is interchangeable, which, in turn, is equivalent to the condition that either one

strategy strictly dominates the other, or both are equivalent. Consequently, the whole game is

pairwise solvable if and only if the trichotomy prevails for each pair of strategies.

It is straightforward to see that any two-person symmetric constant-sum game is pairwise

solvable. It turns out that pairwise solvability extends much further. We consider two-person

symmetric contests, in which each player is rewarded as either the winner or the loser, where

the winning probability of a player is jointly and symmetrically determined, with or without

externality, by a pair of costly actions by the players. This class of games includes the tourna-

ment game of Lazear and Rosen (1981), the rent-seeking game of Tullock (1980), and variations

thereof. We show that two-person symmetric contests are pairwise solvable. Other examples

include weakly unilaterally competitive games (Kats and Thisse 1992) and games with weak

payoff externalities (Ania 2008). The class of pairwise solvable games is rich enough to merit

special attention.

The formal results of the present paper are summarized as follows. Unless explicitly stated

otherwise, we only consider equilibria in pure strategies.3 We begin by showing that the set

1In fact, Nash (1951, p.290) simply defines solvability as the interchangeability. This is because he works

on the mixed extension of a finite strategic game, which is shown by him to have at least one equilibrium.

However, the formal definition of interchangeability is vacuously satisfied if there is no equilibrium. In more

general settings, therefore, one may define solvability as the nonemptiness and the interchangeability of the set

of all equilibria.
2The definition of dominance solvability varies. We adopt one in Moulin (1979, 1986), which implies neither

uniqueness nor the payoff equivalence of equilibria. In Moulin (1984), dominance solvability implies uniqueness.
3Hence an equilibrium in mixed strategies should be regarded as a pure strategy equilibrium in the mixed
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of all equilibria in any pairwise solvable game is interchangeable. The main implication is

that questions on equilibria can be reduced to those on symmetric equilibria. In particular,

the game is solvable if and only if there is a symmetric equilibrium, which does not always

exist. When is a pairwise solvable game solvable? We offer two answers. First, we show that

a strategy in a pairwise solvable game constitutes a symmetric equilibrium if and only if it is

“maximal” in the binary relation generated by the trichotomy condition of pairwise solvability.

This characterization is general, but not straightforward to apply. As the second approach,

therefore, we focus on a special class of games. Let strategies be linearly ordered . We say that

a two-person symmetric game with linearly ordered strategies is quasiconcave at the diagonal

if the payoff function of a player is quasiconcave in her own-strategy at any symmetric strategy

profile. This condition is weaker than the usual quasiconcavity on the real line. We derive a

complete characterization of the existence of a Nash equilibrium in a pairwise solvable game

that is quasiconcave at the diagonal. It is purely order-theoretic, and applies to any game

with linearly ordered strategies. When they form a subset of the reals, it generates several

topological sufficient conditions for existence, which accommodate discontinuous games such

as the electoral competition model of Hotelling (1929).

Furthermore, for finite games, striking dominance relations emerge. We introduce a specific

strategy elimination rule for a two-person finite symmetric game. Its critical feature is that it

eliminates either the smallest strategy but nothing else, the largest strategy but nothing else,

or no strategy at all. For a finite pairwise solvable game that is quasiconcave at the diagonal,

we show that if the rule eliminates a strategy, then it must be a weakly dominated strategy.

Conversely, if the rule fails to eliminate any strategy, then all strategies must be equivalent

to each other, and hence, there is no weakly dominated strategy. The bottom line is that

the successive application of the elimination rule generates an iterated elimination of weakly

dominated strategies that leads precisely to the set of all Nash equilibria. Consequently, the

game is dominance solvable in the sense of Moulin (1979).

In the last part of the paper, we apply the existence results to an investigation of the

evolutionary equilibrium introduced by Schaffer (1989). It is known that a symmetric strategy

profile in a two-person symmetric game is an evolutionary equilibrium if and only if it is a Nash

equilibrium of the relative payoff game of the given game. By definition, the relative payoff game

is a zero-sum game. Thus the game has an evolutionary equilibrium if the relative payoff game

is quasiconcave at the diagonal. This line of reasoning leads to the notion of a concave-convex

game. We show that if a two-person symmetric game is pairwise solvable, concave-convex,

and sufficiently continuous, then it has simultaneously a symmetric Nash equilibrium and an

evolutionary equilibrium. We also show that in any pairwise solvable game, any symmetric

Nash equilibrium weakly Pareto-dominates any evolutionary equilibrium.

extension.
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The present paper compares with the previous literature as follows. Generalizing two-

person strictly competitive games (Friedman 1983), Kats and Thisse (1992) introduce the

notion of n-person weakly unilaterally competitive game. They show that the set of Nash

equilibria in a two-person weakly unilaterally competitive game is interchangeable. A two-

person symmetric weakly unilaterally competitive game is pairwise solvable but not vice versa.

For two-person symmetric games, therefore, our interchangeability result generalizes theirs.

In contrast to the present study, their analysis contains no results concerning existence nor

dominance.4 Duersch, Oechssler, and Schipper (2012a) show, among other things, that a

two-person symmetric zero-sum game has a pure strategy Nash equilibrium if it is quasi-

concave. Our existence result strengthens theirs and their study contains no discussion of

dominance. As far as we know, no previous result demonstrates the dominance solvability in

a class of games rich enough to include (finite formulations of) tournament games and rent-

seeking games. Concerning concave-convex games, Duersch et al. (2012b) contains a result

that is similar to ours, but the corresponding definitions and scopes are distinctively different.

Hehenkamp, Leininger, and Possajennikov (2004) discover the Pareto-dominance relation be-

tween Nash and evolutionary equilibria in a class of symmetric n-person rent-seeking games

with specific functional forms. In the class of two-person symmetric games, our result extends

this to any pairwise solvable game.

Section 2 collects basic notations and definitions. In Section 3, we define pairwise solvabil-

ity, derive the equivalent trichotomy condition, and introduce notions of skew-symmetry of a

function, which prove useful in finding various examples of pairwise solvable games, including

two-person symmetric contests. In Section 4, the interchangeability and the equilibrium char-

acterization are shown for general pairwise solvable games. In Section 5, focusing on games

with linearly ordered strategies that are quasiconcave at the diagonal, we derive characteriza-

tions and sufficient conditions for the existence of an equilibrium. In Section 6, we develop the

analysis of the iterated elimination of weakly dominated strategies and the dominance solvabil-

ity for finite games. In Section 7, we turn to evolutionary equilibria and their relation to Nash

equilibria. We close the paper by giving some concluding remarks in Section 8.

2 Preliminaries

Let S be a nonempty set of strategies and u : S × S → R be a real valued function. The pair

G = 〈S, u〉 defines a two-person symmetric game. In each strategy profile (s, t) ∈ S×S, u(s, t)

is the payoff for the player who chooses s ∈ S (the row player) and u(t, s) is the payoff for the

player who chooses t ∈ S (the column player). A strategy profile (s, t) in G is a Nash equilibrium

4An equilibrium existence result for n-person symmetric weakly unilaterally competitive games is obtained

in Iimura and Watanabe (2015).
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(in pure strategies) if u(s, t) ≥ u(s′, t) and u(t, s) ≥ u(t′, s) for every s′, t′ ∈ S. In particular,

(s, s) is a Nash equilibrium if and only if u(s, s) ≥ u(t, s) for every t ∈ S. Such an equilibrium

is called a symmetric Nash equilibrium. In this paper, a Nash equilibrium always means a

Nash equilibrium in pure strategies. This need not be a serious restriction, since we can always

regard a mixed strategy equilibrium in a finite game as a pure strategy equilibrium in the

mixed extension.5 Let E = EG be the set of all Nash equilibria in G. Recall that if S = {s, t},
then E 6= ∅. That is to say, any 2× 2 symmetric game has a pure strategy equilibrium. Since

the inequalities in the definition of an equilibrium are symmetric with respect to s and t, we

have that

Lemma 2.1. The set E of all Nash equilibria in a two-person symmetric game is symmetric:

For every (s, t) ∈ S × S, (s, t) ∈ E if and only if (t, s) ∈ E.

Strategy s ∈ S strictly dominates strategy s′ ∈ S if u(s, t) > u(s′, t) for every t ∈ S.

Strategy s weakly dominates strategy s′ if u(s, t) ≥ u(s′, t) for every t ∈ S and there is r ∈ S

such that u(s, r) > u(s′, r). Let T ⊂ S be a nonempty set of strategies. The restricted game

generated by T is the two-person symmetric game with strategy set T and payoff function u

that is restricted to T × T . Strategies s ∈ T and s′ ∈ T are equivalent in T if u(s, t) = u(s′, t)

for every t ∈ T (cf. Moulin, 1979, p.1339). Assume that s and s′ are equivalent in T and

pick any t ∈ T . Note that it does not follow that u(t, s) = u(t, s′). Among several equivalent

strategies, it does not matter to the chooser which strategy she employs, but it may matter

greatly to the other player.

3 Pairwise solvable games

3.1 Definition

Let G = 〈S, u〉 be a two-person symmetric game with strategy set S. Recall that EG is the set

of all Nash equilibria in G. E = EG is interchangeable if the following condition is satisfied:

if (s, t), (s′, t′) ∈ E , then (s, t′) ∈ E (Nash 1951, p.290). Thanks to Lemma 2.1, we have an

equivalent condition, which shall be useful in the sequel. We omit the straightforward proof.

Lemma 3.1. Let E be the set of all Nash equilibria in a two-person symmetric game. A

necessary and sufficient condition for E to be interchangeable is that

(Int) (s, t) ∈ E if and only if (s, s), (t, t) ∈ E.

For exposition, call a strategy that appears in an equilibrium an equilibrium strategy.

Trivially, an equilibrium is a pair of equilibrium strategies. A pair of equilibrium strategies,

5Accordingly, we consider the mixed extension of a finite game only when we do so explicitly.
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s t

s u(s, s), u(s, s) u(s, t), u(t, s)

t u(t, s), u(s, t) u(t, t), u(t, t)

Figure 1: The restricted game g(s, t) generated by {s, t}.

however, is not an equilibrium in general, and this is where the interchangeability comes in: E
is interchangeable if and only if any pair of equilibrium strategies is an equilibrium. Formally,

E is interchangeable, or (Int) is true, if and only if E = E ×E, where E = { s ∈ S | (s, s) ∈ E }
is the set of equilibrium strategies. Following Nash (1951), let us call the game solvable if E is

nonempty and interchangeable.

In this paper, we examine the consequences of requiring that “smaller components” of the

game be solvable in the sense of Nash (1951). Let G = 〈S, u〉 be a two-person symmetric game.

For each pair of distinct strategies s, t ∈ S, consider the restricted game generated by {s, t},
which is the symmetric 2 × 2 game depicted in Figure 1 as g(s, t). Since Eg(s,t) 6= ∅, g(s, t)

is solvable if and only if Eg(s,t) is interchangeable. The game G is pairwise solvable if every

g(s, t) is solvable, or equivalently, Eg(s,t) is interchangeable. Pairwise solvability admits a useful

characterization in terms of dominance.

Lemma 3.2. Consider the game g(s, t) in Figure 1. Eg(s,t) is interchangeable if and only if

either s strictly dominates t, t strictly dominates s, or s and t are equivalent.

Proof. Assume that the game is interchangeable. We know that at least one of the four pure

strategy profiles is in E = Eg(s,t). Given Lemmas 2.1 and 3.1, E has to be equal to either

{(s, s)}, {(t, t)}, or {s, t} × {s, t}, which mean, respectively, that s strictly dominates t, t

strictly dominates s, or s and t are equivalent. The converse is obvious.

Consequently, G is pairwise solvable if and only if the following condition is satisfied: For

every distinct s, t ∈ S,

(PS) u(s, s) > u(t, s) if and only if u(s, t) > u(t, t).

In what follows, condition (PS) works as the definition of the pairwise solvability. Clearly,

pairwise solvability is a purely ordinal concept. It is invariant under any order-preserving

payoff transformation.

3.2 Skew-symmetries and pairwise solvability

Consider a real valued function f : X ×X → R. It is skew-symmetric (cf. von Neumann and

Morgenstern 1944, p.166) if for every x, y ∈ X,

f(y, x) = −f(x, y).
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For a real number r ∈ R, let sgn(r) = 1,−1, 0 if r > 0, r < 0, r = 0, respectively. f is

skew-symmetric in sign if for every x, y ∈ X

sgn(f(y, x)) = −sgn(f(x, y)).

If f is skew-symmetric in sign, then f(x, x) = 0 for every x ∈ X. If f is skew-symmetric, then

it is skew-symmetric in sign. f is skew-symmetric in deviation if the function

∆f (x, y) = f(x, y)− f(y, y)

is skew-symmetric.

Lemma 3.3. Consider two functions f, g : X ×X → R.

(1) f is skew-symmetric in deviation if and only if for every x, y ∈ X,

f(x, x) + f(y, y) = f(x, y) + f(y, x).

(2) If f is skew-symmetric, then it is skew-symmetric in deviation. If f is skew-symmetric

in deviation, then ∆f is skew-symmetric in sign.

(3) If f and g are skew-symmetric in deviation and α ∈ R, then (f+g)(x, y) = f(x, y)+g(x, y)

and αf(x, y) are skew-symmetric in deviation.

(4) A two-person symmetric game G = 〈S, u〉 is pairwise solvable if and only if ∆u is skew-

symmetric in sign.

Proof. By definition, f is skew-symmetric in deviation iff f(y, x) − f(x, x) = −(f(x, y) −
f(y, y)) = f(y, y)− f(x, y), or by rearranging, f(x, x)+ f(y, y) = f(x, y)+ f(y, x). The former

statement of (2) follows from f(x, x) = f(y, y) = 0 and (1). The latter statement of (2) is clear.

(3) follows from (1). (4) is obvious from (PS).

A useful consequence of Lemma 3.3 is the following. Given a single variable function

g : X → R, define f : X × X → R by setting f(x, y) = g(x) for any x, y ∈ X. By Lemma

3.3.(1), f is skew-symmetric in deviation. Similarly for h(x, y) = g(y). By Lemma 3.3.(3), if

such a function is added to another function that is also skew-symmetric in deviation, then so

is the resulting function.

3.3 Examples

The notion of skew-symmetry in deviation is particularly useful in finding pairwise solvable

games. Throughout the following examples, let G = 〈S, u〉 be a two-person symmetric game.
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Example 3.4. If G is a K-sum game, where K ∈ R is a constant, then u(x, y) + u(y, x) = K

for every x, y ∈ S. In particular, 2u(x, x) = K for every x ∈ S. Hence

u(x, x) + u(y, y) = u(x, y) + u(y, x) = K,

which shows, by Lemma 3.3.(1), that u is skew-symmetric in deviation. By (2) and (4) of the

lemma, G is pairwise solvable. Let c and e be functions from S to R. Then by (3) the game

〈S, v〉 defined by

v(x, y) = u(x, y)− c(x) + e(y)

is also pairwise solvable. The intended interpretations of c and e are, of course, the cost of

one’s own strategy and the externality generated by the other’s strategy, respectively.

A symmetric probability function on X × X is a function p : X × X → R such that

p(x, y) ≥ 0 and p(x, y) + p(y, x) = 1 for every x, y ∈ X. In particular, p(x, x) = 1/2 for every

x ∈ S. It is clear that any symmetric probability function is skew-symmetric in deviation. Let

p be a symmetric probability function on S × S and assume that

u(x, y) = p(x, y)W + p(y, x)L− c(x) + e(y),

where W and L are constants, and c and e are the cost and the externality, respectively. By

Lemma 3.3, the game is pairwise solvable. In this game, one of the two players is rewarded as

the winner, the other is rewarded as the loser, and the probability of winning is determined

by costly strategies of the players. Let us call this game two-person symmetric contest . Many

games that are especially familiar in applications fall into this category.

Example 3.5. Let ε1 and ε2 be two random variables. For every x, y ∈ S, set

zi(x) = x+ εi

and

p(x, y) = Prob(z1(x) > z2(y)).

If the probability that the difference ε1 − ε2 takes a particular value is zero, and each of the

events ε1 > ε2 and ε1 < ε2 has probability 1/2, then p(x, y) is a symmetric probability function.

For example, if ε1 and ε2 are continuous IID random variables, as in the rank-order tournament

of Lazear and Rosen (1981), then p(x, y) is a symmetric probability function.

Example 3.6. Given g : S → R such that g(x) > 0 for every x ∈ S, define

p(x, y) =
g(x)

g(x) + g(y)
,

for every x, y ∈ S. Then p is a symmetric probability function. Setting L = e(y) = 0,

the resulting contest is a rent-seeking game à la Tullock (1980), in which the constant W

7



s1 s2

s1 5, 5 3, 4

s2 4, 3 2, 2

a

s1 s2

s1 2, 2 3, 2

s2 2, 3 3, 3

b

Figure 2: Pairwise solvable games.

denotes the value of the rent. In the rent-seeking literature, Tullock (1980) and others (e.g.,

Hehenkamp et al. 2004) frequently consider the case in which c(x) = x, and g(x) = xr, where

r > 0.

The existing literature contains more examples of pairwise solvable games.

Example 3.7. In an attempt to investigate classes of games that include strictly competitive

games (Friedman 1983), Kats and Thisse (1992) introduced the notion of a weakly unilaterally

competitive game. For a two-person symmetric game G, their definition simplifies as follows.

The game is weakly unilaterally competitive if u(t, s′) ≥ u(s, s′) implies that u(s′, t) ≤ u(s′, s)

for every s, t, s′ ∈ S. In words, a game is weakly unilaterally competitive if and only if any

unilateral deviation is a Pareto improvement only if the non-deviant’s payoff is unchanged.

Consider weakening this concept by restricting s′ to be equal to either s or t. Namely, the

game G is pairwise competitive if for each pair of distinct strategies {s, t} ⊂ S, the symmetric

2 × 2 game g(s, t), which was depicted in Figure 1, is weakly unilaterally competitive. It is

clear that a weakly unilaterally competitive game is pairwise competitive. One can verify that a

pairwise competitive game is pairwise solvable. Note that the game in Figure 2a is not pairwise

competitive. Hence the class of pairwise solvable games is strictly larger than that of weakly

unilaterally competitive games.

Example 3.8. Ania (2008) introduced the notion of a game with weak payoff externalities.

For a two-person symmetric game G, her definition simplifies as follows. G has weak payoff

externalities if |u(t, s′) − u(s, s′)| > |u(s′, t) − u(s′, s)| for every s, s′, t ∈ S. Let us consider a

weaker condition. G has pairwise weak payoff externalities if |u(t, s)−u(s, s)| > |u(s, t)−u(s, s)|
for every s, t ∈ S. One can show that a two-person symmetric game with pairwise weak payoff

externalities is pairwise solvable. Meanwhile, Figure 2a shows a pairwise solvable game without

pairwise weak payoff externalities.

8



4 Interchangeability and characterization of equilibria

Let G = 〈S, u〉 be a two-person symmetric game. In this section we derive two results that

follow from pairwise solvability alone. First, the set of all equilibria in any pairwise solvable

game is interchangeable.

Proposition 4.1. Let E be the set of all Nash equilibria in a two-person symmetric game G.

If G is pairwise solvable, then E is interchangeable.

Proof. It suffices to show (Int) in Lemma 3.1. Assume first that (s, t) ∈ E . For the row

player, (a) u(s, t) ≥ u(r, t) for every r ∈ S. In particular, (b) u(s, t) ≥ u(t, t). By (PS), (c)

u(s, s) ≥ u(t, s). For the column player, (d) u(t, s) ≥ u(r, s) for every r ∈ S. In particular, (e)

u(t, s) ≥ u(s, s). By (c) and (e), (f) u(t, s) = u(s, s). By (PS), (g) u(s, t) = u(t, t). Putting (f)

into (d), (h) u(s, s) ≥ u(r, s) for every r ∈ S, which shows that (s, s) ∈ E . Putting (g) into (a),

(i) u(t, t) ≥ u(r, t) for every r ∈ S, which shows that (t, t) ∈ E .
Conversely, assume (s, s), (t, t) ∈ E . Then (h) and (i) hold. In particular, u(s, s) ≥ u(t, s)

and u(t, t) ≥ u(s, t). By (PS), u(s, t) ≥ u(t, t) and u(t, s) ≥ u(s, s). Hence (f) and (g) hold.

Putting (g) into (i), we have (a). Putting (f) into (h), we have (d). By (a) and (d), (s, t) ∈ E .

Corollary 4.2. Assume that G is pairwise solvable. Then

(1) E = E × E, where E = { s ∈ S | (s, s) ∈ E } is the set of equilibrium strategies.

(2) G is solvable in the sense of Nash (1951) if and only if E 6= ∅.

(3) G has an equilibrium if and only if it has a symmetric equilibrium.

(4) All equilibrium strategies are equivalent in E. Hence if there is a strict equilibrium, then

it is a unique equilibrium.

Proof. For (4), recall the definition of equivalence of strategies, given at the end of Section 2.

The rest are all clear.

Note that Proposition 4.1 does not imply that all equilibrium payoffs are identical. See the

game in Figure 2b. Intuitively, thanks to the interchangeability, most questions on equilibria

can be reduced to simpler ones on symmetric equilibria, which, in turn, boil down to questions

on equilibrium strategies. An application of Proposition 4.1 is that if the mixed extension of

a finite symmetric two-person game is pairwise solvable, then the mixed extension is solvable.

Note that the mixed extension of a finite pairwise solvable game need not be pairwise solvable.

For example, there is a finite symmetric two-person strictly competitive game whose mixed

extension is not pairwise solvable, let alone strictly competitive.6

6In contrast, the mixed extension of a finite two-person zero-sum game is zero-sum.
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Second, for pairwise solvable games, there is a simple characterization of Nash equilibria.

Lemma 3.2, or equivalently, the condition (PS), naturally suggests the following binary relations

on S: For all x, y ∈ S,

• x � y if u(x, x) > u(y, x) and u(x, y) > u(y, y),

• x ∼ y if u(x, x) = u(y, x) and u(x, y) = u(y, y).

A two-person symmetric game is pairwise solvable if and only if exactly one of x � y, y � x, or

x ∼ y holds for every x, y ∈ S. Note that the binary relations � and ∼ need not be transitive.

Still, the relation � is useful for characterizing equilibria.

Proposition 4.3. If G is pairwise solvable, then a symmetric strategy profile (x, x) is a Nash

equilibrium if and only if there is no y such that y � x. Consequently, G possesses a Nash

equilibrium if and only if there is x ∈ S for which there is no y ∈ S such that y � x.

Proof. Assume that (x, x) is not a Nash equilibrium. Then there is y such that u(y, x) > u(x, x).

Since G is pairwise solvable, u(y, y) > u(x, y). Hence y � x. Conversely, if y � x then (x, x)

cannot be an equilibrium. By the contrapositions, the first claim follows. By Corollary 4.2.(3),

the second claim follows.

For exposition, let G be a pairwise solvable game in which u(x, x) = 0 for every x ∈ S.7

Then y � x if and only if u(y, x) > u(x, x) = 0. Hence G has no equilibrium if and only if for

any strategy by the opponent, there is a strategy that pays off positive against it. This is exactly

the characterization found by Duersch, Oechssler, Schipper (2012a) for (non)equilibrium in a

symmetric two-person zero-sum game.8 Proposition 4.3 generalizes theirs.

5 Equilibria in games with linearly ordered strategies

Consider the rock-paper-scissors game. It is pairwise solvable, but we know and Proposition

4.3 shows that it lacks any (pure strategy) equilibrium. Rather than pursuing the existence

problem in general, we focus on a special class of games. In symmetric contests and other appli-

cations, a strategy can be interpreted as an effort level. In those models, strategies are linearly

ordered. In this section we consider pairwise solvable games in which the set of strategies are

linearly ordered , and the payoff function satisfies a concavity condition, the quasiconcavity at

the diagonal , which shall be defined shortly. These restrictions are enough to derive a complete

and purely order-theoretic characterization of the existence of Nash equilibria.

7It is equivalent to assuming that G is strictly competitive (Friedman, 1983).
8Duersch et al. (2012a) call it the generalized rock-paper-scissors condition.
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5.1 Linearly ordered sets

A binary relation ≥ on a nonempty set P is a linear order if it is complete (a ≥ b or b ≥ a for

every a, b ∈ P ), transitive, and anti-symmetric (if a ≥ b and b ≥ a then a = b). Write a > b

if a ≥ b and a 6= b. Assume that ≥ is a linear order on P 6= ∅. By abuse of notation, we

write b ≤ a, and so on. On the linearly ordered set 〈P,≥〉, notions such as upper bounds, lower

bounds, maximum, minimum, supremum, infimum, and adjectives such as bounded from above

or below are defined, in exactly the same manner as in the real number system. For a subset

K ⊂ P , denote the supremum of K by supK, and so forth.

A subset A of a linearly ordered set P is closed downwards if a ∈ A and b < a imply b ∈ A.

A is closed upwards if a ∈ A and b > a imply b ∈ A. A subset I of P is an interval if whenever

a, b ∈ I and a < c < b, c ∈ I. It is clear that if A is closed downwards and B is closed upwards,

then A ∩B is an interval, which is possibly empty.

5.2 Quasiconcavity at the diagonal

Let G = 〈S, u〉 be a two-person symmetric game in which S is a linearly ordered set. For

x, y, z ∈ S, we say that z is between x and y if min{x, y} ≤ z ≤ max{x, y}. G is quasiconcave

at the diagonal (in own-strategy) if the following condition is satisfied:

(QCD) For any x, y, z ∈ S such that z is between x and y, if u(y, x) ≥ u(x, x), then u(z, x) ≥
u(x, x).

The meaning of (QCD) is clear. Let

BT (x) = { y ∈ S | u(y, x) ≥ u(x, x) } ,

the set of (weak) better responses at (x, x). One can verify that (QCD) is equivalent to the

condition that BT (x) is an interval for every x ∈ S.

Quasiconcavity at the diagonal is a weakening of quasiconcavity as single-peakedness.

Duersch et al. (2012) define that a two-person symmetric game is quasiconcave (in own-

strategy) if u(z, w) ≥ min{u(x,w), u(y, w)} for every x, y, z, w ∈ S such that z is between

x and y. This condition requires that each “column” in the payoff matrix is single-peaked. If it

is single-peaked, then the set of better responses is an interval. Hence quasiconcavity implies

quasiconcavity at the diagonal. The converse does not hold, as (QCD) allows multiple peaks

or valleys, and looks only at the better responses at symmetric profiles.9

9Quasiconcavity at the diagonal is an adaptation of the notion of quasiconcavity at a point , defined by

Mangasarian (1969, Chapter 9). Specifically, regarding u as a function of single variable u(·, x), and applying

his definition at the point (x, x), we obtain (QCD).
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Example 5.1. Let S be an interval in R and F be a cumulative distribution function on S.

Define p(x, y) as follows: For x, y ∈ S,

p(x, y) =


F ((x+ y)/2), if x < y,

1− F ((x+ y)/2), if x > y,

1/2, if x = y.

In words, p(x, y) is the probability that a random draw governed by F is closer to x than

to y. The function p is a symmetric probability function. Let x < z < y and assume that

p(y, x) = 1 − F ((x + y)/2) ≥ 1/2 = p(x, x). Then p(z, x) = 1 − F ((x + z)/2) ≥ 1/2 since

(x + z)/2 < (x + y)/2 and F is nondecreasing. Similarly, p(z, x) ≥ 1/2 if x > z > y and

p(y, x) ≥ 1/2. Hence p is quasiconcave at the diagonal. Therefore the game defined by

u(x, y) = p(x, y) is a 1-sum game that is quasiconcave at the diagonal.10 It is an electoral

competition model à la Hotelling (1929) in which the strategy set is an interval in R.

Quasiconcavity at the diagonal is a purely ordinal concept. It is invariant under any

order-preserving payoff transformation.

5.3 Characterization of equilibria

Let S be a nonempty linearly ordered set and G = 〈S, u〉 be a two-person symmetric game that

is pairwise solvable and quasiconcave at the diagonal . In this subsection, we derive a complete

characterization of Nash equilibrium in G. At this point we make no assumption concerning

the existence of special elements such as supremum, infimum, or upper and lower bounds.

Recall that E is the set of all Nash equilibria in G and E = {x ∈ S | (x, x) ∈ E } is the set

of equilibrium strategies. By Theorem 4.1, E = E × E. Now define

LG = {x ∈ S | u(x, x) ≥ u(y, x) for every y ≤ x } ,

RG = {x ∈ S | u(x, x) ≥ u(y, x) for every y ≥ x } .

Let us say that a strategy is no better take lower if, against itself, the strategy pays off better

than any smaller strategy. LG is the set of strategies that are no better take lower. RG is the

set of strategies that are no better take higher . Clearly, a strategy is a best response against

itself if and only if it is both no better take lower and higher. Formally:

Lemma 5.2. E = LG ∩RG. Hence E 6= ∅ if and only if LG ∩RG 6= ∅.

It turns out that LG is closed downwards and RG is closed upwards, from which a charac-

terization of the uniqueness of a Nash equilibrium follows.

10Actually, one can verify that it is single-peaked.
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Lemma 5.3. For every x ∈ S, if there is y < x such that u(y, x) > u(x, x), then u(y, x′) >

u(x′, x′) for every x′ > x. If there is y > x such that u(y, x) > u(x, x), then u(y, x′) > u(x′, x′)

for every x′ < x.

Proof. Assume that y < x and u(y, x) > u(x, x). By (PS), u(y, y) > u(x, y). By (QCD),

u(y, y) > u(x′, y) for every x′ > x. By (PS), u(y, x′) > u(x′, x′). We have just shown the first

claim. The second claim can be proved similarly.

Lemma 5.4. The set LG is closed downwards. If supLG exists and x < supLG, then x ∈ LG.

The set RG is closed upwards. If inf RG exists and inf RG < x, then x ∈ RG.

Proof. By Lemma 5.3, if x′ /∈ LG and x > x′, then x /∈ LG. By contraposition, if x ∈ LG, then

either x ≤ x′ or x′ ∈ LG. Hence if x ∈ LG and x′ < x, then x′ ∈ LG. Assume that supLG

exists and x < supLG. Then x is not an upper bound of LG. Hence there is x′ ∈ LG such that

x < x′. By the result just shown, x ∈ LG. Similar arguments apply for RG.

Corollary 5.5. The set E of equilibrium strategies is an interval.

Theorem 5.6. Let G = 〈S, u〉 be a two-person symmetric game that is pairwise solvable and

quasiconcave at the diagonal. Assume that supLG and inf RG exist. Then strategy profile

(x∗, x∗) is a unique Nash equilibrium if and only if x∗ = maxLG = minRG.

Proof. If x∗ = maxLG = minRG, then x∗ ∈ LG ∩ RG. Thus by Lemma 5.2, (x∗, x∗) is a

Nash equilibrium. It is unique, since if y > x∗ then y /∈ LG and if y < x∗ then y /∈ RG.

For the converse, assume that (x∗, x∗) is the unique Nash equilibrium. Then by Lemma 5.2,

{x∗} = LG ∩ RG. If there is y ∈ LG such that x∗ < y, then since x∗ ∈ RG and using Lemma

5.4, y ∈ RG. Hence y ∈ LG ∩ RG, which contradicts the assumption that {x∗} = LG ∩ RG.

Therefore y ≤ x∗ for every y ∈ LG. Since x∗ ∈ LG, x
∗ = maxLG. Similarly, one can verify

that x∗ = minRG.

Theorem 5.6 tells us when the intersection LG ∩ RG is a singleton. Let us proceed to

characterize when it is nonempty.

Proposition 5.7. S = LG ∪RG. In particular, either LG 6= ∅ or RG 6= ∅.

Proof. It suffices to show that if x /∈ LG then x ∈ RG. Pick x ∈ S and assume that x /∈ LG.

Then there is z < x such that u(z, x) > u(x, x). By Lemma 5.3, u(z, y) > u(y, y) for every

y > x. Fix such y. Since y > x > z, (QCD) implies that u(x, y) ≥ u(y, y). By (PS),

u(x, x) ≥ u(y, x). Since this is true for every y > x, x ∈ RG.

Theorem 5.8. Let G = 〈S, u〉 be a two-person symmetric game that is pairwise solvable and

quasiconcave at the diagonal. Assume that supLG and inf RG exist. Then inf RG ≤ supLG.
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Proof. For a contradiction, assume that xl = supLG < inf RG = xr. By Proposition 5.7,

observe that there is no x ∈ S such that xl < x < xr. Now, since xr /∈ LG, there is x1 <

xr such that u(x1, xr) > u(xr, xr). Similarly, since xl /∈ RG, there is x2 > xl such that

u(x2, xl) > u(xl, xl). By the observation above, x1 ≤ xl and xr ≤ x2. Hence there are

x1 ≤ xl < xr ≤ x2 such that (1) u(x1, xr) > u(xr, xr), and (2) u(x2, xl) > u(xl, xl). By (1)

and (PS), u(x1, x1) > u(xr, x1). By (QCD), (3) u(x1, x1) > u(x2, x1). Similarly, (2), (PS) and

(QCD) imply that (4) u(x2, x2) > u(x1, x2). But (3) and (4) violate (PS).

Corollary 5.9. If maxLG and minRG exist, then E 6= ∅. In particular, if S is finite, then

E 6= ∅.

Theorem 5.10. Let G = 〈S, u〉 be a two-person symmetric game that is pairwise solvable and

quasiconcave at the diagonal. Assume that supLG and inf RG exist. Then E 6= ∅ if and only

if either inf RG < supLG or both maxLG and minRG exist and are equal.

Proof. By Lemma 5.2, E 6= ∅ if and only if LG ∩ RG 6= ∅. Let x ∈ LG ∩ RG and assume

that it is not true that inf RG < supLG. Then by Theorem 5.8, there is x∗ ∈ S such that

x∗ = inf RG = supLG. Since x ∈ LG, x ≤ x∗. Since x ∈ RG, x ≥ x∗. Thus x = x∗. Therefore

supLG ∈ LG and inf RG ∈ RG, i.e., x
∗ = minRG = maxLG. Conversely, assume that either

inf RG < supLG or maxLG = minRG exist. If the latter is true, then E 6= ∅ by Corollary 5.9

(or by Theorem 5.6). Thus assume that xr = inf RG < supLG = xl. Then xl is not a lower

bound of RG. Hence there is x∗ ∈ RG such that x∗ < xl. Meanwhile, by x∗ < xl and Lemma

5.4, x∗ ∈ LG. Consequently, x
∗ ∈ LG ∩RG.

Assuming the existence of supLG and inf RG, the above results imply that there are mul-

tiple equilibria if and only if inf RG < supLG, and that there is no equilibrium if and only if

(LG, RG) constitutes a Dedekind cut .

5.4 Practical sufficient conditions

The results in the preceding subsection apply to any game that is pairwise solvable and quasi-

concave at the diagonal. Let us see their implications in practical settings. If S is finite then

there is an equilibrium by Corollary 5.9. Therefore, for the rest of this section, let S be a

subset of R, the real line equipped with the standard order, and let G = 〈S, u〉 be a two-person

symmetric game that is pairwise solvable and quasiconcave at the diagonal.

The main results in the preceding subsection assume that supLG and inf RG exist in S.

We should begin with the question of when they exist.

Lemma 5.11. Let S be a nonempty interval in R. If LG 6= S and RG 6= S, then neither

LG nor RG is empty, LG is bounded from above in S, and RG is bounded from below in S.

Consequently, supLG and inf RG exist in S.
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Proof. Assume that neither LG nor RG is equal to S. By Proposition 5.7, LG = ∅ implies

RG = S. By contraposition, LG 6= ∅. Similarly, RG 6= ∅. Pick x ∈ S such that x /∈ LG. By

Proposition 5.4, x is an upper bound of LG. Hence LG is bounded from above in R. Hence

supLG exists in R. Pick any y ∈ LG. Then it follows that y ≤ supLG ≤ x. Since S is an

interval, supLG ∈ S. Similarly, inf RG exists and is in S.

Recall that S ⊂ R is an interval if and only if it is convex. It should be noted that supLG

and inf RG exist in S even if S is not bounded, e.g., S = R, as long as LG 6= S and RG 6= S.11

Example 5.12. Consider the electoral competition model in Example 5.1. For any cumulative

distribution function F , there are x, y ∈ S such that y < x and F ((x + y)/2) > 1/2. Thus

x /∈ LG. Hence LG 6= S. Similarly, RG 6= S. By Lemma 5.11, supLG and inf RG exist.

By Corollary 5.9, a simple sufficient condition for the existence of a Nash equilibrium is

that both maxLG and minRG exist. The question is, then, when do they exist. An answer is

given by (RC) and (LC).

(RC) If u(yn, x) ≥ u(x, x), y < yn < x, and yn → y, then u(y, x) ≥ u(x, x),

(LC) If u(yn, x) ≥ u(x, x), x < yn < y, and yn → y, then u(y, x) ≥ u(x, x).

In words, (RC) requires for every x that u(·, x) is upper semi-continuous from the right at every

y such that y < x, and (LC) requires for every x that u(·, x) is upper semi-continuous from the

left at every y such that x < y. Therefore the combination of (LC) and (RC) stipulates that

for every x, u(·, x) is upper semi-continuous outward from (x, x). Note that the continuity with

respect to own-strategy, as opposed to the full continuity in S×S, is enough for the satisfaction

of these conditions.

Proposition 5.13. Let S be a nonempty interval in R and G = 〈S, u〉 be pairwise solvable and

quasiconcave at the diagonal. Assume that supLG and inf RG exist. If (LC) is satisfied, then

maxLG exists. If (RC) is satisfied, then minRG exists. Consequently, if (LC) and (RC) are

satisfied, then E 6= ∅.

Proof. Let x∗ = supLG. We shall show that if (LC), then x∗ ∈ LG. Assume (LC). By the

definition of sup, there is a sequence 〈xn〉 such that xn ∈ LG and xn → x∗. Pick y < x∗. Since

xn → x∗, for all sufficiently large k, y < xk. For all such k, u(xk, xk) ≥ u(y, xk) since xk ∈ LG.

By (PS), u(xk, y) ≥ u(y, y). By (LC), u(x∗, y) ≥ u(y, y). By (PS), u(x∗, x∗) ≥ u(y, x∗). Hence

x∗ ∈ LG. Similarly, if (RC) then inf RG ∈ RG. By Corollary 5.9, there is an equilibrium.

11What if the game at hand fails to satisfy the assumptions of Lemma 5.11? If LG = S, say, then E = RG×RG.

Such games should be considered on a case by case basis.
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Recall the set BT (x) = { y ∈ S | u(y, x) ≥ u(x, x) } of better responses at (x, x). It is

straightforward to show that (LC) and (RC) hold if and only if BT (x) is closed for every

x ∈ S. Meanwhile, quasiconcavity at the diagonal is equivalent to the convexity of BT (x)

when S is an interval in R. Hence:

Proposition 5.14. Let S be a nonempty interval in R and G = 〈S, u〉 be pairwise solvable.

Assume that supLG and inf RG exist. If BT (x) is closed and convex for every x ∈ S, then

there is a Nash equilibrium.

Finally, let us verify that our results accommodate the electoral competition model in

Example 5.1.

Lemma 5.15. In the game in Example 5.1, maxLG exists and (RC) is satisfied.

Proof. By the observation in Example 5.12, supLG and inf RG exist. Since F is right-continuous,

the payoff function satisfies (RC). Details are left to the reader. For the existence of maxLG,

let x∗ = supLG. By definition of sup there is a sequence 〈xn〉 such that xn ∈ LG and xn ≤ x∗

for every n and xn → x∗. Since xn ∈ LG, u(xn − 2/n, xn) = F (xn − 1/n) ≤ u(xn, xn) = 1/2.

Now set zn = xn − 1/n and consider the sequence 〈zn〉. Then F (zn) ≤ 1/2 for every n and

zn → x∗ from the left. Therefore, F (zn) → F (x∗ − 0) ≤ 1/2, where F (x∗ − 0) is the left-

hand limit of F at x∗, which exists since F is a cumulative distribution function. Since F is

nondecreasing, F (z) ≤ 1/2 for every z < x∗. Take y < x∗. Then (x∗ + y)/2 < x∗. Hence

u(y, x∗) = F ((x∗ + y)/2) ≤ 1/2 = u(x∗, x∗), which shows that x∗ ∈ LG, or x
∗ = maxLG.

6 Dominance solvability

A pairwise solvable game is solvable in the sense of Nash (1951) if it is quasiconcave at the

diagonal and satisfies one of the conditions found in the previous section. If the game is finite,

we can say more. We shall show that in a finite pairwise solvable game, quasiconcavity at the

diagonal generates a special type of dominance relation among the strategies. Throughout this

section, let G = 〈S, u〉 be a two-person symmetric game in which S = {s1, . . . , sn}. We call

such a game an n× n game. We shall assume that strategies are linearly ordered according to

the respective subscripts. Hence s1 = minS and sn = maxS. For an n× n game, we write uij

for u(si, sj) and so forth.

We start by introducing the notion of a symmetric elimination of strategies. Let T be a

nonempty proper subset of S. Imagine removing, simultaneously, all the strategies not in T

from the payoff matrix of G. This results in a game G′ = 〈T, u〉, the restricted game generated

by T . We call this procedure a symmetric elimination of strategies. A crucial feature of

symmetric elimination of strategies is that any diagonal entry remains a diagonal entry if the

corresponding strategy survives the elimination at all. Likewise the non-diagonal entries.
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Lemma 6.1. Let G be an n×n game, and consider a symmetric elimination of strategies, which

results in an m×m game G′, where 1 ≤ m < n. If G is pairwise solvable and quasiconcave at

the diagonal, then so is G′.

It is clear that G′ is pairwise solvable. Quasiconcavity is preserved since the strategy sk is

between si and sj in G′ only if they stand in that relation in G. We omit the details.

A symmetric elimination of weakly dominated strategies is a symmetric elimination of

strategies such that every strategy in S \T is weakly dominated. We allow the possibility that

T contains weakly dominated strategies.

Lemma 6.2. Let G be an n× n game, and consider a symmetric elimination of weakly dom-

inated strategies, which results in an m × m game G′, where 1 ≤ m < n. Then any Nash

equilibrium in G′ is a Nash equilibrium in G.

Proof. As a binary relation on S, weak domination is transitive, and no strategy weakly dom-

inates itself. It follows that for each weakly dominated strategy in a finite game, there is an

undominated strategy that weakly dominates it. The rest is left to the reader.

By Lemma 6.1, both pairwise solvability and quasiconcavity at the diagonal will be pre-

served throughout an iterated symmetric elimination of strategies. In what follows, we ex-

tensively discuss eliminations of strategies and iterations thereof. In so doing, we rename or

renumber the strategies, and we do so implicitly .

6.1 Iterated elimination of weakly dominated strategies

Given an n× n game G, consider the following strategy elimination rule, which we call (E):

(E1) If u11 < un1, then eliminate s1. If u11 > un1, then eliminate sn. If u11 = un1, then

go to (E2).

(E2) If there is j, 1 < j < n, such that u11 < uj1, then eliminate s1. If there is no such

row, then go to (E3).

(E3) If there is j, 1 < j < n, such that ujn > unn, then eliminate sn. If there is no such

row, then eliminate no strategy.

When (E) eliminates a strategy, it is to be understood that the corresponding row and the

column are simultaneously removed from the payoff matrix of G. Hence an application of (E)

to G results in either G itself or one-strategy-smaller (n − 1) × (n − 1) game, depending on

whether or not (E) eliminates a strategy. When it does, (E) generates a symmetric elimination

of strategy, and it eliminates either the smallest strategy or the largest strategy. It never

eliminates one in the middle.
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Theorem 6.3. Let G be a pairwise solvable n× n game that is quasiconcave at the diagonal.

If rule (E) eliminates a strategy in G, then it is weakly dominated.

Proof. Assume that s1 is eliminated by rule (E). Then u11 ≤ un1 and there is k > 1 such that

u11 < uk1. Since u11 ≤ un1, (QCD) implies that u11 ≤ uj1 for every j. By (PS),

u1j ≤ ujj for every j. (1)

On the other hand, by Corollary 5.9 there is sj∗ such that (sj∗ , sj∗) is a Nash equilibrium.

Hence uj∗j∗ ≥ ujj∗ for every j. By (PS),

uj∗j ≥ ujj for every j. (2)

By (1) and (2), uj∗j ≥ u1j for every j. Recall that there is k > 1 such that u11 < uk1. For this

k, u1k < ukk by (PS). Hence uj∗k ≥ ukk > u1k, which means that sj∗ weakly dominates s1. An

entirely analogous argument shows that if sn is eliminated by rule (E), then sj∗ , where j∗ < n

(since (sn, sn) cannot be a Nash equilibrium), weakly dominates sn.

A sort of converse of Theorem 6.3 is also true.

Theorem 6.4. Let G be a pairwise solvable n× n game that is quasiconcave at the diagonal.

If rule (E) fails to eliminate any strategy, then all strategies in G are equivalent. In particular,

there is no weakly dominated strategy.

Proof. Assume that (E1), (E2), and (E3) fail to eliminate any strategy. Since (E1) failed, u11 =

un1. By (QCD), uj1 ≥ u11 for every j = 1, . . . , n. Since (E2) failed, u11 = u21 = · · · = un1. By

(PS), u1k = ukk for every k = 1, . . . , n. By (QCD), ujk ≥ ukk for every k and every j ≤ k. If

ujk > ukk for some j < k, then ujj > ukj by (PS). By (QCD), ujj > unj . By (PS), ujn > unn,

but this would have allowed (E3) to eliminate strategy sn. Hence u1k = u2k = · · · = ukk

for every k. In particular, u1n = u2n = · · · = unn. From this, one can similarly show that

ukk = u(k+1)k = · · · = unk. Consequently, u1k = u2k = · · · = unk for every k.

Apply rule (E) to the n×n game G iteratively. The iteration terminates in at most (n−1)

steps and generates the set of surviving strategies S∗ ⊂ S. Consider the restricted game

G∗ = 〈S∗, u〉 generated by S∗. It is a game in which rule (E) fails to eliminate any strategy.

Corollary 6.5. Consider G∗ = 〈S∗, u〉. Then S∗×S∗ is the final outcome of the iterated elim-

ination of weakly dominated strategies in G, and G∗ contains no weakly dominated strategies.

Proof. By Lemma 6.1, any game that appears during the iterative procedure is pairwise solv-

able and quasiconcave at the diagonal. By Theorem 6.3, any eliminated strategy is a weakly

dominated strategy. By Theorem 6.4, there is no weakly dominated strategy in G∗.
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6.2 The set of Nash equilibria

We are now ready to consider the relationship between the set E of Nash equilibria in G and

the final outcome S∗ × S∗ of the iterated elimination.

Theorem 6.6. Let S∗ × S∗ be the final outcome of the iterated application of rule (E) to an

n×n game G, which is pairwise solvable and quasiconcave at the diagonal. Then E = S∗×S∗.

Proof. By Corollary 4.2, E = E × E, where E = { s ∈ S | (s, s) ∈ E }. It suffices to show that

S∗ = E. Rule (E) eliminates a strategy si only if there is a row j 6= i such that uji > uii, which

implies that (si, si) is not a Nash equilibrium in G. Hence if (si, si) ∈ E , then (si, si) ∈ S∗×S∗.

That is, E ⊂ S∗. Conversely, pick si ∈ S∗. By Theorem 6.4, (si, si) is a Nash equilibrium in

G∗. By Corollary 6.5, S∗ × S∗ is the final outcome of an iterated symmetric elimination of

weakly dominated strategies. Since the game is finite, the number of iterations is finite. By

applying Lemma 6.2 the appropriate number of times, we know that (si, si) is in E . That is,

si ∈ E. Therefore S∗ = E.

In words, there is a procedure of iterated elimination of weakly dominated strategies that

leads precisely to the solution, in the sense of Nash. In other words, a strategy survives the

iterated elimination if and only if it is an equilibrium strategy.12 If all the weak dominations

are in fact strict, as they would be in a game with no payoff ties, then there is a unique

equilibrium, and the equilibrium strategy is a unique rationalizable strategy (Bernheim 1984,

Pearce 1984).13

Example 6.7. Consider discretizing the electoral competition model in Example 5.1. In several

textbook treatments (e.g., Dixit and Skeath 2004, Watson 2013), equilibrium has been found

as the final outcome of the iterated elimination of dominated strategies. Theorem 6.6 ensures

that this is always the case.

In some games, the iterated elimination governed by rule (E) becomes trivial in that an

equilibrium strategy emerges as the dominant strategy after just one or two steps. In other

games, the iterated elimination maintains itself non-trivial until the penultimate step.

Example 6.8. Set S = {0, 1/5, 2/5, 3/5, 4/5, 1} and let p(s, t) = s1/2/(s1/2 + t1/2) for every

s, t ∈ S × S such that (s, t) 6= (0, 0), and let p(0, 0) = 1/2. Consider the 6× 6 game defined by

u(s, t) = 4p(s, t)− s.

12By Corollary 5.5, therefore, S∗ is an interval in S.
13This follows from the fact that any rationalizable strategy survives the iterated eliminations of strictly

dominated strategies (Pearce 1984, p.1035). Moreover, the unique equilibrium in this case is robust in the sense

of Kajii and Morris (1997).
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0 1/5 2/5 3/5 4/5 1

0 2.000 0.000 0.000 0.000 0.000 0.000

1/5 3.800 1.800 1.457 1.264 1.133 1.036

2/5 3.600 1.943 1.600 1.398 1.257 1.150

3/5 3.400 1.936 1.602 1.400 1.256 1.146

4/5 3.200 1.867 1.543 1.344 1.200 1.089

1 3.000 1.764 1.450 1.254 1.111 1.000

a

s1 s2 s3

s1 1, 1 0, 1 −1, 1

s2 1, 0 0, 0 0,−1

s3 1,−1 −1, 0 −1,−1

b

Figure 3: Pairwise solvable games.

This is a finite symmetric contest which is quasiconcave at the diagonal. The payoff matrix is

given by Figure 3a, in which the payoffs are rounded off to three decimal place, and only those

of the row player are shown. Rule (E) eliminates strategy 0 first, and subsequently, 1, 1/5, 4/5,

and finally, 2/5. The surviving strategy profile (3/5, 3/5) is a unique Nash equilibrium. Note

that the equilibrium strategy 3/5 emerges as a dominant strategy only at the final step.

It is well known that the final outcome of the iterated elimination of weakly dominated

strategies is sensitive to the details as to whether several strategies may be eliminated at a

time, whether all the dominated strategies are eliminated at a time, and what is the order of

elimination when there are many. In the elimination governed by rule (E), only a single strategy

may be eliminated at a time even when there are multiple weakly dominated strategies. Under

other elimination rules, the final outcome need not coincide with E .

Example 6.9. Consider the game in Figure 3b. It is pairwise solvable and quasiconcave at

the diagonal. The outcome under rule (E) is {s1, s2} × {s1, s2}, which is the set of all Nash

equilibria. Note that s2 weakly dominates s1. Hence the outcome under the rule that eliminates

all the weakly dominated strategies at a time is the singleton {(s2, s2)}.14

The preceding example shows that the final outcome of the iterated elimination of weakly

dominated strategies does depend on the details of the elimination rule. Nonetheless, it follows

from Lemma 6.1 and Theorem 6.4 that under any elimination rule that generates a symmetric

elimination of weakly dominated strategies, the strategies that survive the iterated elimination

are equivalent. Therefore G is dominance solvable in the sense of Moulin (1979, 1986), who

14In this game, the set of Nash equilibria, {s1, s2} × {s1, s2}, is a solution, but not a strong solution in the

sense of Nash (1951). In addition, all strategies are rationalizable.
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stipulates that the elimination procedure remove all weakly dominated strategies at each step,

and then requires that all surviving strategies be equivalent.15

7 Evolutionary equilibria

Let G = 〈S, u〉 be a two-person symmetric game. A symmetric profile (x, x) ∈ S × S in G

is called a (symmetric) evolutionary equilibrium (Schaffer 1989) if u(y, x) ≤ u(x, y) for every

y ∈ S. Let us say that a strategy y is a beating deviation from (x, x) if u(y, x) > u(x, y). The

profile (x, x) is an evolutionary equilibrium if there is no beating deviation from there. The

strategy in an evolutionary equilibrium is a version of the finite-population evolutionarily stable

strategy , which is introduced by Schaffer (1988) to capture the spiteful behavior within a finite

population in an evolutionary setting.

Define r(x, y) = u(x, y) − u(y, x) for x, y ∈ S, and consider r(G) = 〈S, r〉. It is called the

relative payoff game of G. It is pointed out by Schaffer (1989) that (x, x) is an evolutionary

equilibrium inG if and only if it is a Nash equilibrium in r(G). Clearly, r(G) is a zero-sum game.

Hence it is pairwise solvable. The results in Section 5 then imply that G has an evolutionary

equilibrium whenever r(G) is quasiconcave at the diagonal and r(x, y) is sufficiently continuous.

Let S ⊂ R. We say that u is concave-convex if

u(z, w)− u(x,w)

z − x
≤ u(y, w)− u(x,w)

y − x
and

u(w, z)− u(w, x)

z − x
≥ u(w, y)− u(w, x)

y − x

for every x, y, z, w ∈ S such that x < y < z. In practice, S is either a finite set or an interval.

In the next result, we focus on the case that S is an interval in R, but it is straightforward to

translate the result to the case of finite games. Neither do we search for a minimal continuity

condition. Given that S is an interval, we simply assume that u is coordinatewise continuous:

u(·, y) is continuous for any fixed y ∈ S and u(x, ·) is continuous for any fixed x ∈ S.16 Recall

from subsection 5.3 that LG is the set of strategies that are no better take lower, and RG is

the set of strategies that are no better take higher.

Proposition 7.1. Let G = 〈S, u〉 be a two-person symmetric game in which S is an interval

in R such that LG 6= S and RG 6= S. If u is concave-convex and coordinatewise continuous,

then G possesses an evolutionary equilibrium.

Proof. It is clear that if u is coordinatewise continuous, then r(x, y) is continuous with respect

to own-strategy. By Lemma 5.11 and Proposition 5.13, therefore, it suffices to show that r(G) is

15The notion of dominance solvability does not imply payoff equivalence between equilibria. Moulin (1986,

p.73) explicitly allows a game like the one in Figure 2b to be dominance solvable.
16If u is concave-convex, the coordinatewise continuity reduces to the requirement that the coordinatewise

payoff functions are continuous at the boundaries of S, if there are any.
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quasiconcave at the diagonal. By definition of r(G), it suffices to show that if u(y, x) ≥ u(x, y)

then u(z, x) ≥ u(x, z) for any z ∈ (min{x, y},max{x, y}). Thus assume that u(y, x) ≥ u(x, y),

where x 6= y. Consider the case that x < y. Then

u(y, x)− u(x, x)

y − x
≥ u(x, y)− u(x, x)

y − x
.

Choose z such that x < z < y. Since u is concave with respect to the first argument, (u(z, x)−
u(x, x))/(z − x) ≥ (u(y, x) − u(x, x))/(y − x). Since u is convex with respect to the second

argument, (u(x, y)−u(x, x))/(y−x) ≥ (u(x, z)−u(x, x))/(z−x). The three inequalities imply

that
u(z, x)− u(x, x)

z − x
≥ u(x, z)− u(x, x)

z − x
.

Since z > x, it follows that u(z, x) ≥ u(x, z). The analogous argument works if y < x.

Corollary 7.2. Assume that G satisfies the assumptions in Proposition 7.1. If G is pairwise

solvable, then G possesses a symmetric Nash equilibrium and an evolutionary equilibrium.

Proof. Assume that u is concave-convex and coordinatewise continuous. Then it is clear that u

is quasiconcave at the diagonal and own-strategy continuous. Hence G has a Nash equilibrium

by Proposition 5.13.

In contrast to pairwise solvability and quasiconcavity at the diagonal, the property of being

concave-convex is not an ordinal concept. An order-preserving transformation of a concave-

convex payoff function need not be concave-convex. One can verify, however, that the set of

Nash (respectively, evolutionary) equilibria is invariant under any order-preserving transfor-

mation of the payoff function. Namely:

Corollary 7.3. Let G = 〈S, u〉 and G′ = 〈S, v〉 be two-person symmetric games. Assume that

G satisfies the assumptions in Corollary 7.2 and that v is an order-preserving transformation

of u. Then G′ possesses a symmetric Nash equilibrium and an evolutionary equilibrium.

Example 7.4. Consider a two-person symmetric contest

u(x, y) = p(x, y)W + p(y, x)L− c(x),

where p(x, y) is a symmetric probability function. In this game, u(x, y) is concave-convex if

p is concave with respect to the first argument and c(x) is convex. For example, recall the

rent-seeking game in Example 3.6, in which

p(x, y) =
g(x)

g(x) + g(y)
,

for every x, y ∈ S. If g is concave and the cost function c is convex, then this game is concave-

convex, and it has a Nash equilibrium and an evolutionary equilibrium.

22



In a two-person symmetric game, all symmetric strategy profiles are (weakly) Pareto-

ranked. It is natural to ask which equilibrium, Nash or evolutionary, dominates the other.

To compare, let (xN , xN ) be a Nash equilibrium and (xE , xE) be an evolutionary equilibrium.

From the definitions of these equilibria, it follows that (n) u(xN , xN ) ≥ u(xE , xN ) and (e)

u(xE , xN ) ≥ u(xN , xE). In general, u(xE , xE) may be larger than u(xN , xN ), smaller than

u(xN , xE), or somewhere in between. But if the game is pairwise solvable, then (n) implies

(ps) u(xN , xE) ≥ u(xE , xE). By (n), (e), and (ps), u(xN , xN ) ≥ u(xE , xE). Consider the row

player in (xE , xE). By deviating to xN , she never earns less, by (ps). But she may refrain from

doing so since that would allow the other to beat her, by (e). In this way, spiteful behavior

keeps players trapped in an inefficient outcome.

Proposition 7.5. Let G be a pairwise solvable game. If (xN , xN ) is a Nash equilibrium and

(xE , xE) is an evolutionary equilibrium, then u(xN , xN ) ≥ u(xE , xE).

The next example illustrates an extreme case.

Example 7.6. Let v be a real valued function on a nonempty set S and consider G = 〈S, u〉,
where u(x, y) = v(y). By Lemma 3.3, G is pairwise solvable. In this game, all strategy

profiles are Nash equilibria. Consider the relative payoff game r(G) = 〈S, r〉, where r(x, y) =

v(y)−v(x). A symmetric profile (x, x) is an evolutionary equilibrium if and only if 0 = r(x, x) ≥
r(y, x) = v(x)− v(y) for every y ∈ S, or equivalently, u(x, x) = miny∈S u(y, y).

8 Concluding remarks

In a pairwise solvable game, each restricted game generated by a pair of strategies has a pure

strategy equilibrium, satisfies the interchangeability condition, and is, a fortiori, dominance

solvable. Does any of these extend to the whole game? For the case of interchangeability,

the problem is answered in the affirmative. For the others, we have found some additional

conditions. A classical result along a similar line of reasoning is Shapley (1964, p.6, Theorem

2.1): “If A is the matrix of a zero-sum two-person game, and if every 2-by-2 submatrix of A

has a saddle point, then A has a saddle point.”

Moulin (1979, 1984, 1986) gives several sufficient conditions for dominance solvability. Each

of them applies to either the strategic form of an extensive game with perfect information, or

a strategic game with differentiable payoff functions. In contrast, our dominance solvability

result concerns finite pairwise solvable games, which are totally independent of any sequential

procedure in the background. Thus our result seems new, and it applies to many games that

appear frequently in applications, including symmetric contests.17

17Milgrom and Roberts (1990) show that in a supermodular game, the iterated elimination of strictly dominated

strategies leads to a minimum and a maximum Nash equilibria. Subsequently, Milgrom and Shannon (1994,
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s1 s2 s3 s4

s1 0, 0 0, 1 1, 0 0, 0

s2 1, 0 1, 1 1, 1 0, 1

s3 0, 1 1, 1 1, 1 1, 0

s4 0, 0 1, 0 0, 1 0, 0

a

s1 s2 s3

s1 3, 3 1, 4 2, 1

s2 4, 1 2, 2 1, 3

s3 1, 2 3, 1 1, 1

b

Figure 4: Symmetric games.

Friedman (1983) shows that the set of all equilibria in a two-person strictly competitive

game is interchangeable. This is generalized by Kats and Thisse (1992) to weakly unilaterally

competitive games. Unfortunately, however, these papers contain no concrete economic appli-

cations. For symmetric games, we not only generalize their results but exhibit a number of

familiar games possessing interchangeability.18

One can make use of the results in Section 5 to establish the existence of an equilibrium

in an n-person symmetric game. For details, see Iimura, Maruta, and Watanabe (2016), which

investigates a class of n-person symmetric games that includes weakly unilaterally competitive

games and games with weak payoff externalities (Ania 2008).

A pairwise solvable game need not have potential functions. Consider the game in Figure

4a, which is pairwise solvable and quasiconcave at the diagonal. One can verify that it ad-

mits neither a generalized ordinal potential (Monderer and Shapley 1996) nor a best-response

potential (Voorneveld 2000).19

Several questions remain to be investigated. One is to see to what extent the current

analysis can be extended to asymmetric games. A moment’s reflection reveals that a payoff

transformation argument would extend some of the results to a class of asymmetric games that

are essentially symmetric.20 Another is to explore whether dominance solvability generalizes

p.175) generalize this result to the class of games with ordinal strategic complementarities. These results

need not apply to pairwise solvable games. Consider the game in Figure 3a. In this game, the difference

u(3/5, y) − u(2/5, y) alternates its sign twice as y increases from 0 to 1, which means that the game lacks the

single crossing property (Milgrom and Shannon 1994, p.160), or that the game is not one with ordinal strategic

complementarities.
18Yasuda (2016) shows that a version of interchangeability must hold in any two-person supermodular game.
19Note that the game in Figure 4a has a generalized potential in the sense of Morris and Ui (2005), which is

maximized at the set of Nash equilibria, {s2, s3} × {s2, s3}.
20Let Gu = 〈S, u〉 and Gv = 〈S, v〉 be pairwise solvable games. Assume that u and v are order-equivalent at

the diagonal , that is:

For every x, y ∈ S, u(x, x) ≥ u(y, x) iff v(x, x) ≥ v(y, x), and u(y, x) ≥ u(x, x) iff v(y, x) ≥ v(x, x).

Now consider a two-person “asymmetric” strategic game Ga = 〈S1, S2, u1, u2〉 in which S1 = S2 = S, u1(x, y) =
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to games with infinitely many strategies. Finally, we note that no results seem to be retained

under a weaker definition of pairwise solvability. Consider the game in Figure 4b. It is a

quasiconcave game that is “weakly” pairwise solvable, in that in every 2 × 2 restricted game,

one strategy weakly dominates the other. The game has no equilibrium in pure strategies.
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