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Takuya Iimura† Toshimasa Maruta‡ Takahiro Watanabe§

October 20, 2016

Abstract

We study pure strategy Nash equilibria in games with partial weak payoff external-
ities, which generalize games with weak payoff externalities introduced by Ania (2008).
For an n-person symmetric game with partial weak payoff externalities, we show that
the set of symmetric Nash equilibria coincides with the set of symmetric evolutionary
equilibria (Schaffer, 1989), and that if the game is finite, the set of symmetric Nash equi-
libria, which are equivalent to symmetric evolutionary equilibria, is nonempty whenever
strategies are linearly ordered and the payoff function is quasiconcave. The existence
result generalizes that of Iimura and Watanabe (2016), since, if it is symmetric, a weakly
unilaterally competitive game (Kats and Thisse, 1992) is one with partial weak payoff
externalities.

Keywords: existence of equilibrium, symmetric evolutionary equilibrium,
games with weak payoff externalities, weakly unilaterally competitive games,
weakly competitive games, potential games
JEL Classifications: C72 (Noncooperative games), C73 (Evolutionary games)

1 Introduction

The class of games with weak payoff externalities was introduced by Ania (2008) as a class
of symmetric games in which “the effect of any unilateral deviation on the deviator’s payoff
is always greater than the effect on the opponents’ payoffs” (Ania, 2008, p.478). She showed
that in a game with weak payoff externalities, a symmetric Nash equilibrium (SNE) is equiv-
alent to a symmetric evolutionary equilibrium (SEE) introduced by Schaffer (1989). This
equivalence was generalized by Hehenkamp, Possajennikov, and Guse (2010), who showed
that either the weak payoff externalities or their “weak competitiveness” at symmetric pro-
files is sufficient, and almost necessary, for the equivalence.

An important question arises here: under what conditions does such an equivalent equi-
librium exist? In this paper, we are concerned with an SNE in pure strategies in finite or
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infinite symmetric games.1 For infinite symmetric games, an SNE exists if, e.g., the strategy
set is a compact and convex subset of a Euclidean space and the payoff function is con-
tinuous and quasiconcave (in own strategy) (Moulin, 1986, p.115). Under these standard
assumptions, the existence of SNEs, which are equivalent to SEEs, is assured for infinite
games with weak payoff externalities or with weak competitiveness.2 For finite symmetric
games, in contrast, the quasiconcavity alone does not guarantee the existence of an SNE
in pure strategies.3 Duersch, Oechssler, and Schipper (2012) showed that there exists an
SNE in a two-person symmetric finite zero-sum game if the strategy set is linearly ordered
and the payoff function is quasiconcave. Iimura and Watanabe (2016) generalized the result
to n-person weakly unilaterally competitive games (Kats and Thisse, 1992) that are finite
and symmetric under the same assumptions of linear order and quasiconcavity. It should be
noted that a game with weak payoff externalities need not be weakly unilaterally competi-
tive. In particular, there is no two-person zero-sum game that has weak payoff externalities.
Hence these results do not apply to games with weak payoff externalities. To our knowledge,
however, there is no literature on the existence of Nash equilibria in games with weak payoff
externalities. We want to fill this gap.

As a generalization of a game with weak payoff externalities, we introduce the notion of
a game with partial weak payoff externalities. We say that a game has partial weak payoff
externalities if the weak payoff externality condition holds for those opponents whose payoffs
increase (resp. decrease) when the deviator’s payoff increases (resp. decreases). In fact, the
definition requires the condition to be satisfied only for two-strategy subgames of the whole
game.4 Interestingly, the condition reads that “a symmetric profile is an SNE if and only if it
is an SEE”; quite an obvious way of securing the equivalence. We show that in a game with
partial weak payoff externalities, the set of SNEs coincides with the set of SEEs. Although
partial weak payoff externality alone does not guarantee the existence of SNE,5 we show
that if the game is finite, the set of SNEs, which are equivalent to SEEs, is nonempty under
the assumptions of linear order and quasiconcavity, as in Duersch, Oechssler, and Schipper
(2012). The proof invokes a special type of path-acyclicity. Since a weakly unilaterally
competitive symmetric game turns out to be a game with partial weak payoff externalities,
we now have a unifying class of symmetric games in which SNE and SEE are equivalent and
their existence in a finite game is guaranteed by the quasiconcavity on the linearly ordered
strategies.

Whereas partial weak payoff externality alone does not guarantee the existence of SNE,
it is not clear whether the weak payoff externality condition alone ensures the existence
of equilibrium or not. For two-person games, in contrast, we show that the weak payoff
externality condition alone is sufficient to guarantee the existence of an SNE. This is shown
by a potential function argument.

The rest of the paper is organized as follows. Section 2 introduces the notations and basic
definitions. Section 3 provides our main results. Concluding remarks are given in Section 4.

1A game is finite if all strategy sets are finite sets; infinite if they are infinite sets.
2The same observation applies to a game with partial weak payoff externalities, which we shall introduce

shortly. Concerning existence of equilibria, we shall thus mainly focus on finite games.
3See, Figure 3 in Section 3.
4A restriction embedded in the original definition of weak payoff externalities in Ania (2008) is also

removed, i.e., our formulation permits payoff ties.
5Consider the Rock-Paper-Scissors game which is not a game with weak payoff externalities. But it is a

game with partial weak payoff externalities.
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2 Preliminaries

We denote by (In, S, u) an n-person symmetric game, where In = {1, . . . , n} is a set of players
(n ≥ 2), S is a finite or infinite set (|S| ≥ 2), and u is a real-valued function on Sn (n-product
of S) satisfying

u(x, ξ) = u(x, π(ξ)) ∀π ∈ Πn−1, ∀(x, ξ) ∈ S × Sn−1,

where Πn−1 is the set of all permutations of (n − 1)-tuples. For each player i ∈ In, the
strategy set Si is given by Si = S and the payoff function ui is given by

ui(s) = u(π1i(s)),

where π1i is the identity if i = 1 , and the transposition of the first and the ith elements if
i ̸= 1. We call the game finite (resp. infinite) if S is finite (resp. infinite).

Let xk be the k-repetition of x, i.e., xk = x, . . . , x (k times). A strategy profile s ∈ Sn is
symmetric if s = (xn) for some x ∈ S. If s is symmetric then ui(s) = uj(s) for every i, j ∈ In.
If s = (xi−1, y, xn−i), i.e., if player i chooses y and the others x, then ui(s) = u(y, xn−1) and
uj(s) = u(xn−1, y) for every j ̸= i.

A strategy profile (xn) is a symmetric Nash equilibrium (SNE) if

u(x, xn−1) ≥ u(y, xn−1) ∀y ∈ S.

An SNE is strict if the above inequality is strict. We say that the game is tie-free if u(x, ξ) ̸=
u(y, ξ) for any x, y ∈ S such that x ̸= y and ξ ∈ Sn−1, i.e., if there is no payoff tie with
respect to the own strategy. If a game is tie-free, then a Nash equilibrium (NE) of a tie-free
game is strict. A strategy profile (xn) is a weak symmetric evolutionary equilibrium (Schaffer,
1989) if

u(xn−1, y) ≥ u(y, xn−1) ∀y ∈ S.

For simplicity, we refer to it as a symmetric evolutionary equilibrium (SEE). The definition
of an SEE says that if some player changes his strategy from x to y then his payoff never
exceeds the payoff of the opponents.

Given a symmetric game G = (In, S, u), we call a game (In, {x, y}, u) a two-strategy
subgame of G if x, y ∈ S, x ̸= y, with u restricted to {x, y}n.

3 The main results

3.1 The definition and the equivalence of equilibria

A symmetric game (In, S, u) is said to have a weak payoff externalities (Ania, 2008) if for
any x, y ∈ S such that x ̸= y and ξ ∈ Sn−1

|u(y, ξ)− u(x, ξ)| > |u(π1i(y, ξ))− u(π1i(x, ξ))| ∀i ̸= 1. (1)

Note that this definition is silent on what should happen if u(y, ξ)− u(x, ξ) = 0. A possible
interpretation is that the game is being assumed to be tie-free. Let us modify (1) by allowing
deviator’s payoff ties. Following Marx and Swinkels (1997), we say that a symmetric game
(In, S, u) satisfies the transference of decision maker indifference if
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(TDI) for any x, y ∈ S and ξ ∈ Sn−1

u(y, ξ)− u(x, ξ) = 0 =⇒ u(π1i(y, ξ))− u(π1i(x, ξ)) = 0 ∀i ̸= 1.

We say that a symmetric game (In, S, u) has a weak payoff externalities if

(WPE) for any x, y ∈ S and ξ ∈ Sn−1

u(y, ξ)− u(x, ξ) ̸= 0 =⇒ |u(y, ξ)− u(x, ξ)| > |u(π1i(y, ξ))− u(π1i(x, ξ))|
u(y, ξ)− u(x, ξ) = 0 =⇒ u(π1i(y, ξ))− u(π1i(x, ξ)) = 0

}
∀i ̸= 1.

Note that (TDI) does not place any restriction for tie-free games.

Consider the following condition that generalizes (WPE).

Definition 3.1. A symmetric game (In, S, u) has partial weak payoff externalities if

(PWPE) for any x, y ∈ S and ξ ∈ {x, y}n−1

u(y, ξ)− u(x, ξ) > 0 =⇒ u(y, ξ)− u(x, ξ) > u(π1i(y, ξ))− u(π1i(x, ξ))

u(y, ξ)− u(x, ξ) < 0 =⇒ u(y, ξ)− u(x, ξ) < u(π1i(y, ξ))− u(π1i(x, ξ))

u(y, ξ)− u(x, ξ) = 0 =⇒ u(π1i(y, ξ))− u(π1i(x, ξ)) = 0

 ∀i ̸= 1.

Note that (PWPE) requires (WPE) to hold not for all but for those opponents whose
payoffs increase (resp. decrease) when the deviator’s payoff increases (resp. decreases), and
not in the whole game but in its two-strategy subgames. Note also that the three conditions
in (PWPE) are combined to a single bi-conditional:

u(y, ξ)− u(x, ξ) > 0 ⇐⇒ u(y, ξ)− u(x, ξ) > u(π1i(y, ξ))− u(π1i(x, ξ)).

Therefore, if ξ = xn−1, in particular, then u(y, xn−1)− u(xn) > 0 if and only if u(y, xn−1) >
u(xn−1, y), i.e.,

u(y, xn−1) ≤ u(xn) ⇐⇒ u(y, xn−1) ≤ u(xn−1, y). (2)

Varying y ∈ S, this says that (xn) is an SNE if and only it is an SEE. We thus have:

Proposition 3.1. For any game satisfying (PWPE), an SNE is equivalent to an SEE.

3.2 The relationship to competitive games

In what follows, we show how games with partial weak payoff externalities relate to weakly
unilaterally competitive games and weak competitive games. A symmetric game (In, S, u) is
said to be weakly unilaterally competitive (Kats and Thisse, 1992)6 if

(WUC) for any x, y ∈ S and ξ ∈ Sn−1

u(y, ξ) > u(x, ξ) =⇒ u(π1i(y, ξ)) ≤ u(π1i(x, ξ))

u(y, ξ) = u(x, ξ) =⇒ u(π1i(y, ξ)) = u(π1i(x, ξ))

}
∀i ̸= 1.
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a b c

a 2, 2 0, 3 1,−1

b 3, 0 1, 1 1,−1

c −1, 1 −1, 1 0, 0

Figure 1: A game satisfying (PWPE) but not (WPE) nor (WUC)

It is straightforward to see that (WUC) implies (PWPE). Hence, the class of games satisfying
(PWPE) includes not only games satisfying (WPE), but also games satisfying (WUC). See
Figure 1, which shows that these inclusions are indeed strict.

A symmetric game (In, S, u) is said to be weakly competitive (Hehenkamp, Possajen-
nikov, and Guse, 2010) if

(WC) for any x, y ∈ S and ξ ∈ Sn−1

u(y, ξ) ≥ u(x, ξ) =⇒ u(π1i(y, ξ)) ≤ u(π1i(x, ξ))

u(y, ξ) < u(x, ξ) =⇒ u(π1i(y, ξ)) ≥ u(π1i(x, ξ))

}
∃i ̸= 1.

Letting ξ = xn−1, we find that (WC) implies the equivalence of an SNE and an SEE:
for any y ∈ S, u(y, xn−1) ≤ u(xn) if and only if u(y, xn−1) ≤ u(xn−1, y). Also, it can be
shown that (WUC) implies (WC), and (WC) is equivalent to (WUC) in two-person games.
However, (WC) does not imply (TDI) if n > 2 and (x, ξ) ̸= xn. (See Figure 7 of Iimura and
Watanabe (2016).) Hence a game satisfying (WC) need not satisfy (PWPE).

See Figure 2 for the relationship among the classes of games.

SNE =SEE

PWPE

WPE

WC

WUC

Figure 2: Relationship among the classes of games

3.3 The existence of an SNE in finite games

We first observe that any game satisfying (PWPE) has the following property.

6The original definition of a weakly unilaterally competitive game by Kats and Thisse (1992) does not
require the game to be symmetric.
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Lemma 3.1. Let G = (In, S, u) be a symmetric game that satisfies (PWPE). Then

u(y, xn−1) > u(xn) ⇐⇒ u(yn) > u(x, yn−1) ∀x, y ∈ S. (⋆)

Proof. Let x, y ∈ S and η ∈ {x, y}n−2, where η is void if n = 2. We show that

u(y, x, η) > u(x, x, η) ⇐⇒ u(y, η, y) > u(x, η, y). (3)

Then (⋆) follows directly if n = 2, otherwise by successively substituting η with

η0 = (xn−2), η1 = (xn−3, y), . . . , ηn−3 = (x, yn−3), ηn−2 = (yn−2),

noting for every k = 0, . . . , n− 3 that (ηk, y) = (x, ηk+1) and hence that

u(y, ηk, y) > u(x, ηk, y) ⇐⇒ u(y, x, ηk+1) > u(x, x, ηk+1).

Observe that

u(y, x, η) > u(x, x, η) ⇐⇒ u(y, x, η)− u(x, x, η) > u(x, y, η)− u(x, x, η) by (PWPE)

⇐⇒ u(x, y, η)− u(y, y, η) < u(y, x, η)− u(y, y, η)

⇐⇒ u(x, y, η) < u(y, y, η) by (PWPE). (4)

Hence u(y, x, η) > u(x, x, η) ⇐⇒ u(y, y, η) > u(x, y, η), which is equivalent to (3) by
symmetry.

In the sequel, we assume that S is a finite and linearly ordered set. For a, b, c ∈ S, we
say that b is between a and c if min{a, c} < b < max{a, c}.

Definition 3.2 (Duersch, Oechssler, and Schipper (2012)). The payoff function is quasicon-
cave (in own strategy) if

(QC) for any x, x′, x′′, y ∈ S such that x is between x′ and x′′,

u(x, yn−1) ≥ min{u(x′, yn−1), u(x′′, yn−1)}.

G is quasiconcave if the payoff function is quasiconcave.

Remark 3.1. For infinite symmetric games, an SNE exists if, e.g., the strategy set is a
compact and convex subset of a Euclidean space and the payoff function is continuous and
quasiconcave (in own strategy) (Moulin, 1986, p.115). For finite symmetric games, in con-
trast, the quasiconcavity alone does not guarantee the existence of an SNE in pure strategies.
A game in Figure 3 is an example.

Remark 3.2. In Duersch, Oechssler, and Schipper (2012), (QC) is defined for two-person
games. In Iimura and Watanabe (2016), it is defined for n-person games, given any profile
of the opponents’ strategies in Sn−1. The current definition, which assumes yn−1 ∈ Sn−1, is
slightly weaker.

We now show:
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1 2 3

1 −1,−1 1, 0 0, 1

2 0, 1 0, 0 1,−1

3 1, 0 −1, 1 −1,−1

Figure 3: A game satisfying (QC) does not have an equilibrium

Proposition 3.2. Let G = (In, S, u) be a finite symmetric game that satisfies (PWPE). If
S is linearly ordered and u satisfies (QC), then G has an SNE. If in addition G is tie-free
then the SNE is unique.

Proof. Let β(x) = {y ∈ S | u(y, xn−1) ≥ u(z, xn−1) ∀z ∈ S} for each x ∈ S, and consider
the sequence (xk)k≥0 of S generated by a rule:

(BR) For k = 0, pick an arbitrary x0 ∈ S. For k ≥ 1, pick xk+1 ∈ β(xk) if there
exists some y ∈ β(xk) such that u(y, xn−1

k ) > u(xnk); otherwise terminate at xk.

We show that for any such sequence there exists a natural number T ≥ 0 such that the
sequence terminates at xT ∈ S. That (xnT ) ∈ Sn is an SNE is obvious by the construction.
Since S is finite, it suffices to show that the sequence never includes a cycle. Now, suppose
by way of contradiction that the sequence includes a cycle x0, x1, . . . , xp = x0 (p ≥ 2), whose
underlying set is denoted by C. Let a = minC and b = maxC. Then there exists x ∈ C
such that a < x ≤ b and u(a, xn−1) > u(xn), and y ∈ C such that a ≤ y < b and u(b, yn−1) >
u(yn). By (⋆) of Lemma 3.1, which is an implication of (PWPE), u(a, xn−1) > u(xn) implies
u(an) > u(x, an−1), and u(b, yn−1) > u(yn) implies u(bn) > u(y, bn−1). By (QC), u(an) >
u(x, an−1) implies u(an) > u(b, an−1), and u(bn) > u(y, bn−1) implies u(bn) > u(a, bn−1).
However, that u(an) > u(b, an−1) and u(bn) > u(a, bn−1) contradicts (⋆). Hence there exists
some T ≥ 0 such that the sequence terminates at xT .

To see the last claim, suppose that G is tie-free. Then (⋆) immediately implies the
uniqueness of the SNE.

3.4 Two-person games

In this subsection, we consider a two-person symmetric game satisfying (WPE), as opposed
to (PWPE). The set S of strategies need not be finite nor ordered. Hence the game may not
be quasiconcave.

Let P be a function defined on S2 by P (x, y) = u(x, y) + u(y, x), the payoff sum of the
players. If u(y, z) ̸= u(x, z) then (WPE) says that |u(y, z) − u(x, z)| > |u(z, y) − u(z, x)|,
so u(y, z) > u(x, z) implies u(y, z) − u(x, z) > u(z, x) − u(z, y), i.e., u(y, z) + u(z, y) >
u(x, z) + u(z, x). Thus u(y, z) > u(x, z) implies P (y, z) > P (x, z). Changing the role of
y and x, u(y, z) < u(x, z) implies P (y, z) < P (x, z). In addition, the (TDI) condition
stipulates that u(y, z) = u(x, z) implies P (y, z) = P (x, z). Hence a two-person symmetric
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game satisfying (WPE) is an ordinal potential game (Monderer and Shapley, 1996) in which
the payoff sum P works as its ordinal potential function:7

u(y, z) > u(x, z) ⇐⇒ P (y, z) > P (x, z) ∀x, y, z ∈ S.

Hence, with appropriate topological condition, there exists an NE. Actually, an SNE exists.

Proposition 3.3. Let G = (I2, S, u) be a two-person symmetric game satisfying (WPE).
Assume also that S is a compact topological space and u is continuous on S2 endowed with
product topology if S is infinite. Then G has an SNE. If in addition G is tie-free then it is
a unique NE of G.

Proof. As we have observed, G has an ordinal potential function P : S2 → R defined by
P (x, y) = u(x, y) + u(y, x). If u is continuous and S is compact, then P is continuous and
has a maximum on the compact set S2. Any maximizer of P is a NE. Let (y, x) ∈ S2 be
a NE. Since (WPE) implies (PWPE), Lemma 3.1 applies, and the condition (⋆) reads as
follows:

u(y, x) > u(x, x) ⇐⇒ u(y, y) > u(x, y). (5)

Now, u(y, x) ≥ u(x, x) by equilibrium condition. By (5),

u(y, y) ≥ u(x, y).

By symmetry, (x, y) ∈ S2 is another NE. By equilibrium condition,

u(y, y) ≤ u(x, y).

Hence u(y, y) = u(x, y), so u(y, y) = u(x, y) ≥ u(z, y) for all z ∈ S, i.e., u1(y, y) ≥ u1(z, y)
for all z ∈ S and u2(y, y) ≥ u2(y, z) for all z ∈ S by symmetry. Hence (y, y) is an SNE.

To see the last claim, suppose that G is tie-free and (x, y) is a NE for some x ̸= y.
Then (y, x) is also a NE by symmetry. Since G is tie-free, we have u(x, y) > u(y, y) and
u(y, x) > u(x, x). It contradicts (5). Hence every NE must be symmetric if G is tie-free.
Also, it is unique by (5).

4 Concluding remarks

Let x, y ∈ S and η ∈ {x, y}n−2. In a game satisfying (PWPE), u(y, x, η) > u(x, y, η)
implies u(y, y, η) > u(x, y, η) by (4). The first inequality says that the x-player may have a
incentive to imitate the y-player. The second inequality says that the imitation results in a
payoff improvement. It follows that “imitating the better” is individually improving under
(PWPE). For a finite game, we can conceive of a sequence of symmetric profiles such that
for each step a unilateral deviation governed by (BR) is followed by n−1 imitations, leading
to another symmetric profile. This process need not be Pareto improving. However, if the
game is a two-person tie-free game with (WPE), then the resulting unique SNE, which is
also an SEE, is Pareto efficient.

7Recall that (WPE) is a conjunction of (1) and (TDI). One can verify that a two-person game satisfying
(1) is a generalized ordinal potential game (Monderer and Shapley, 1996) in which the payoff sum P works as
its generalized ordinal potential function.
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Let us recapitulate some crucial conditions and their roles. For n-person games, (PWPE)
and (QC) are the key conditions. (PWPE) is implied by (WPE) or (WUC), and implies (⋆)
and (2). Concerning the existence of equilibrium, we make use of (⋆) and (QC). Concerning
the equivalence between SNE and SEE, all we need is (2) at symmetric strategy profiles.
Although both conditions are implied by (PWPE), (⋆) and (2) are independent: Neither
implies the other.

For two-person games, there is a single key condition, (WPE). (PWPE) is too weak to
let the potential argument work. Needless to say, the argument based on (PWPE) and (QC)
applies in a two-person game as well.

Finally, let us go back to condition (⋆). In a two-person symmetric game, it reduces
to the condition that u(y, x) > u(x, x) if and only if u(y, y) > u(x, y) for any x, y ∈ S.
In Iimura, Maruta, and Watanabe (2016), we call a two-person symmetric game pairwise
solvable if it satisfies this condition. Investigating two-person pairwise solvable games, results
in Iimura, Maruta, and Watanabe (2016) include sets of conditions for the existence of
equilibrium. It turns out that these existence results may be applied to prove the existence
of SNE in n-person symmetric games. Given an n-person symmetric game G = (In, S, u),
let τ(G) = (I2, S, v) be a two-person symmetric game such that

v(x, y) = u(x, yn−1).

It can be verified that for any x ∈ S, x2 ∈ S2 is an SNE in τ(G) if and only if xn ∈ Sn

is an SNE in G. Moreover, if G satisfies (⋆) then τ(G) is pairwise solvable. Consequently,
the existence problem in an n-person symmetric game with partial weak payoff externalities
comes down to that of the associated two-person pairwise solvable game.
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