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Reversiblity of a storage process in discrete-time with 
continuous components

ŌSAWA, Hideo

Abstract

We consider a simple storage process in discrete-time with the continuous components. The 

process is described by the equation Xn+1 = Xn+An−Bn+1 where Xn is the system state at time n, An 

and Bn+1 the infow from outside at the start of n-th time slot and the outflow at the end of n-th time 

slot, respectively.

We assume that An is independent of any other element in the system, and Bn+1 depends only on 

the system state at the start of n-th time slot, Xn+An. Such a storage process is applied to discrete-

time queue, fluid queues and so on. For a stationary process of the above system, we investigate the 

reversibility in time.
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Ⅰ　Introduction

In this paper, we consider a discrete-time storage process with the continuous components. The 

model is composed of two kinds of flows, inflow and outflow. At the start of each time slot, the 

system has the inflow from outside. The amount of inflow is independent of any other element in the 

system. On the other hand, at the end of time slot there is the outflow whose size depends only on 

the system state, the system state at that time plus the inflow just after the time slot.

For queues and queueing networks, such models with discrete states were considered by several 

authors. Walrand （1983） and Ōsawa （1989） studied discrete-time queues with Poisson arrivals and 

negative binomial arrivals, respectively. They showed their models have quasi-reversibility. Ōsawa 

（1994） showed that these results hold for queues with the general arrivals. Further, he determined 

the form of the departure rule under the system has the quasi-reversibility. These results were 

generalized by Miyazawa （1994）, （1995）. Time-reversibility and quasi-reversibility have been dealt 
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with precisely in Kelly （1979） and Walrand （1988）.

In this paper, we consider the model with the continuous state space. The mathematical model is 

introduced in section 2, precisely. We define three processes for the system state. In section 3, we 

deal with the relationship among three processes for the system state. We study the time-reversed 

properties of the process.

Ⅱ　The model

Consider a discrete-time storage model with two kinds of flows, inflow and outflow. Let An be the 

amount of inflow just after time n and Bn+1 be the amount of outflow at the end of n th time slot. 

Then the system state Xn at time n is defined by

Xn+1 = Xn + An − Bn+1,　n ∈ Z,

where Z is the set of all integers.

Assume that An ; n ∈ Z  are independent and identical random variables which are independent 

of any other elements, and moreover,

P［An ≤ y|Xi , Bi , （i ≤ n）, Aj , （j < n）］ = A（y）.

We also assume that Bn+1 depends only on Xn + An, that is,

P［Bn+1 ≤ y|Xi, Ai, Bi, （i ≤ n）］ = P［Bn+1 ≤ y|Xn + An］.

The outflows from the system are determined by conditional distribution functions

P［Bn+1 ≤ y|Xn + An = x］ = B（x, y）,

for x, y ≥ 0 and n = 0, 1,…. For these distributions, we make assumptions that A（x） and B（x, y） are 

absolutely continuous on R+ with probability density functions （p. d. f.） a（y） and b（x, y） for each x≥0, 

that is,
∞

0
a（y）dy = 1,

∞

0
b（x, y）dy = 1.

Under the above conditions, we consider three stochastic processes:

　　　　　　　　　　　　　　　　χ　= （Bn, Xn, An） : n ∈ Z  ,

　　　　　　　　　　　　　　　　χA　= （Xn, An） : n ∈ Z  ,

　　　　　　　　　　　　　　　　χB　= （Xn, Bn） : n ∈ Z  .

It is clear that these are homogeneous Markov chains. Throughout the paper, these processes are in 

stationary. In the rest of this paper, we focus on reversibility and relations among these processes.
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Ⅲ　Reversed properties for processes

In this section, we investigate relations for three processes defined in the previous section. In 

particular, we are interested in time-reversed properties. For our purpose, assume that the outflow is 

controlled by

b（x, y） = c（x）α（x−y）β（y）, x, y > 0,

where α（x）, β（x） and c（x） are continuous and integrable functions on R+ satisfying that

c（x）=
x

0
α（x－y）β（y）dy

－1
= α＊β（x）－1 .

3.1. Process χ

Let R+ be the set of all real numbers that are positive, then the process χ is a Markov chain with 

the state space R3
+ . For two states x = （u, x, s） and y = （v, y, t）∈R3

+ , its transition probability 

density is given by

　　　　　　　　　　　　p（x, y） = b（x + s, v）a（t）1Q（x, y）

　　　　　　　　　　　　　　　　 = c（x + s）α（x + s−v）β（v）a（t）1Q（x, y）

where 1Q（x, y） is an indicator function for a set Q = （x, y） : x + s = y + v  ;

1Q（x , y）=
1, （x , y）∈Q,
0, otherwise .

We now get the following theorem on the stationary distribution for the process χ.

Theorem 1.

Assume that β（y） = κa（y） for any positive constantκ, then following statements hold.

（1） The process χ has a stationary distribution given by the probability density function

ν（x） = Ca（u）α（x）a（s）, x = （u, x, s）∈R3
+ ,

where C is the normalizing constant.

（2） The process χ− = （An, Xn, Bn） : n ∈ Z  is reversed in time for χ.

Proof　（1） By direct calculation, we get
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for any y ∈ R3
+ . This means the stationary distribution for the process χ is given by 

ν（x） : x ∈R3
+  .

（2） For two processes χ and χ− , denote system states at time n by Xn = （Bn, Xn, An） and X−
n  = 

（An, Xn, Bn） respectively. Moreover, define a state x− = （s, x, u） for x = （u, x, s）, we then have

ν（x）p（x, y） = Ca（u）α（x）a（s）c（x + s）α（x + s−v）κa（v）a（t）1Q（x, y）

　　　　　　　　　　　　　= Ca（v）α（y）a（t）c（y + v）α（y + v−x）κa（s）a（u）1Q（x, y）

　　　　　　　　　　　　　= ν（y−）p（y−, x−）

for x = （u, x, s） and y = （v, y, t） ∈ R3
+. This means that the joint events（Xn, Xn+1） and （X−

n+1, X−
n） 

have the same probabilistic law. Thus the second statement of Theorem holds.

Remark 

The property shown in （2） of Theorem 1 is known as quasi-reversibility.

3.2. ProcessesχA andχB

By virtue of Theorem 1, we can have the relations between processesχA andχB.

The process χA is a Markov chain with transition probabilities given by

pA（x, y） = b（x + s, x + s−y）a（t）, x = （x, s）, y = （y, t）∈ R2
+.

In the same way, the process χB is a Markov chain with transition probabilities given by

pB（x, y） = a（y + v − x）b（y + v, v）, x = （x, u）, y = （y, v） ∈ R2
+.

Theorem 2.

Under the same condition of Theorem 1, processes χA and χB are time-reversed each other.

Proof　From Theorem 1, χA and χB have the same stationary distribution given by 

π（x） = Cα（x）a（s） for x = （x, s）. We now have

 π（x） pA（x, y） = Cα（x）a（s）c（x + s）α（y）κa（x + s − y）a（t）

　　　　　　　　　　　　　　　　= Cα（y）a（t）a（x + s − y）c（x + s）α（x）κa（s）

　　　　　　　　　　　　　　　　=π（y）pB（y, x）

R3
+

ν（x）p（x , y）dx

=
R3
+

Ca（u）α（x）a（s）c（x + s）α（x + s －v）κa（v）a（t）1Q（x , y）dx

=
∞

0
a（u）du c（y + v）

y+v

0
α（x）κa（y + v－x）dx Cα（y）a（v）a（t）

=ν（y）
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for x = （x, s） and y = （y, t）∈ R2
+. Thus this theorem has been proved.

3.3. Process for the system state

Consider the process Xn : n ∈ Z  that describes the system state. This process is a Markov chain 

with transition probabilities given by

p（x, y）=

∞

y－x
b（x + s, x + s－y）a（s）ds, y > x,

∞

0
b（x + s, x + s－y）a（s）ds, y ≤ x,

for x, y ∈ R+. Then we obtain the following theorem.

Theorem 3.

Under the same condition of Theorem 1, the process Xn  is time-reversible.

Proof　From Theorem 1, the process Xn  has the stationary distribution given by π（x） = Cα（x） 

for x ∈ R+ . For y > x, we then have

π（x）p（x, y）= Cα（x）
∞

y－x
c（x + s）α（y）κa（x + s －y）a（s）ds

= Cα（y）
∞

0
c（y + t）α（x）κa（y + t －x）a（t）dt

= π（y）p（y, x）

for y > x > 0. This means that Xn  is time-reversible.

Ⅳ　An example for queues

Consider the GI/G/1 queueing storage model in discrete-time. At time n, a customer arrives at the 

system and he/she needs the service time An whose size has a p.d.f. f（x）. Let Bn+1 be the amount of 

work in the system during times n and n + 1 and suppose that Bn+1 has a p.d.f. b（x, y） under the 

condition that the total work road is x at the beginning of n-th time slot. Then the system state Xn is 

defined by

Xn+1 = Xn + An−Bn+1, n ∈ Z.

If b（x, y） = c（x）α（x−y）f（y）, then the process Xn  : n ∈ Z  is time-reversible. From quasi-

reversibility in Theorem 1, the inflow process An  and the outflow process Bn  are independent 

each other and have the same probabilistic movements.
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For example, in the case of f（x） =μe−μx, i.e., M/G/1 storage model, the system has quasi-

reversibility for any function α（x）. This means that we can select the outflow rule to control the 

system state.
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