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Reversibility of Markov chains with applications to  

storage models

Hideo O
―
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1. Introduction

This paper reviews some results on reversibility of Markov chains and itʼs applications to 

storage processes according to the O― sawaʼs papers. He has studied this theme since 1985. 

First, O― sawa ([2], [5], [6]) investigated reversibility of Markov chains with general state space 

and obtained the necessary and sufficient conditions that the Markov chain is reversible. Using these 

results, reversibility of queueing processes was studied by O― sawa ([2], [3], [6], [12], [13]). Moreover，

O― sawa made research on reversibility of autoregressive processes ([4], [15]), Markov increment 

processes ([16], [18]) and Markovian storage models ([5], [6], [14]). 

In 1970ʼs, Kelly took the leader in developing applications to the wide range of models in 

operations research, particularly queues and queueing networks, see [1]. He also proposed quasi-

reversibility as the property that brings the product-form solution for queueing networks in the 

same way as reversibility. O― sawa studied quasi-reversibility for storage processes in discrete-time ([7], 

[8], [9], [10], [11], [14], [17], [19]). The results obtained in the above papers are collected in this paper. 
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2. Reversibility

We consider a Markov chain { , }nX n Z X  with the state space S where Z is the set of all 

integers. In this paper, "Markov chain" means "Markov process in discrete-time". Let ( , , P)S F  be a 

probability space and assume that X has transition probabilities P(x, A), i.e.,

		  1( , ) P[ | ],  for and .n nP x A X A X x x S A F    

In this section, we describe the conditions under that a Markov chain X is reversible in 

accordance with O― sawa ([2], [6]). 

2.1 Definition

If there exists a measure   satisfying that

		  (Rev1) ( ) ( , ) ( ) ( , ), for an y , ,
A B

dx P x B dx P x A A B F= Îò ò 

then a Markov chain X is said to be reversible and   is called a reversible measure. 

Remark 2.1   Consider the Markov chain X on the real line R with transition densities

		  ( , ), , ,i.e., ( , ) ( , ) .
A

p x y x y R P x A p x y dyÎ = ò
Then (Rev 1) is rewritten as

		  ( ) ( , ) ( ) ( , ),  for any , ,p x p x y p y p y x x y R= Î

where ( )p ×  is a measurable function on R. 

Remark 2.2   Consider the Markov chain X on Z with transition probabilities

		  ( , ),  , ,  i.e.,  ( , ) ( , ).
j A

p i j i j Z P x A p i j
Î

Î =å
Then (Rev 1) is rewritten as

		  ( , ) ( , ), for any , ,i jp p i j p p j i i j Z= Î

where { }ip  is a measurable function on Z. 

In this section, we describe the conditions under that a Markov chain X is reversible  in 

accordance with O― sawa ([2], [6]).  Let ( )B S  be the set of real-valued F-measurable bounded functions 

defined on S, then the following notations are used:

		  　   ( ) ( ),
S

f dx f x =ò

		  ( ) ( , ) ( ),
S

Pf x P x dy f y=ò

for any measurable functions ( )f ×  on S.

Lemma 2.1   (O― sawa [2], [6])  We have followings. 

(1) (Rev1) is equivalent to 

		  1 2 2 1 1 2( ) ( ),  , ( ).f Pf f Pf for any f f B S= Î 

(2) For a reversible Markov chain, the reversible measure   is invariant, i.e.,
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		  ( ) ( , ) ( ),    .
S

dx P x A A for any A F= Îò  

2.2 Time-reversibility

For a stochastic process { , }nY n ZÎ , if the time-reversed process { , }nY n Z- Î  has the same 

probabilistic law, that is,

		
1 2 1 2

( , , , ) ( , , , )  with probability 1,
k kn n n m n m n m nY Y Y Y Y Y- - -= 

for any integers 1 2, km n n n< < < , then { }nY  is said to be time-reversible. lt is clear that the time-

reversible process is stationary (see Kelly [1]). We have a following theorem on time-reversibility of 

Markov chains X. 

Th�eorem 2.2   (O― sawa [2], [6])  A stationary Markov chain X is time-reversible if and only if X is 

reversible with the bounded measure  . And then the probability measure 

		
( )

( )
( )
A

A
S




=

is the stationary distribution of X. 

2.3 Markov chains with atoms

Let   be a state such that 

		  ( ,{ }) 0, for some ,P x x S > Î

then   is said to be an atom. ln this section, we describe reversibility of Markov chains with atoms. 

Th�eorem 2.3   (O― sawa [2], [6])  Suppose that a Markov chain X has an atom such as 

		  { }( , { ) 0,  }  .P x for any x S Sº> Î - 

Then X is reversible if and only if the transition probability P satisfies

　 1 2 2 1(Rev2) ( ( 1 )( ) ( ( 1 )( ),P f P f P P f P f P  =

for any 1 2, ( )f f B SÎ  where 1  is the indicator of { } . 

In the above theorem, a reversible measure is given by

		
( , )

( ) , .
( ,{ })

P dx
dx x S

P x



= Î

Thus if   is bounded, X is time-reversible. 

Re�mark 2.3   If the Markov chain X in Remark 2.1 has an atom   in Theorem 2.3, then (Rev 2) is 

rewritten as

		  ( , ) ( , ) ( ,{ }) ( , ) ( , ) ( ,{ }),  , .p x p x y P y p y p y x P x x y S= Î    

We now consider the Markov chain with several atoms. Let    be the atoms and denote the 

set of all atoms by , that is,
i



− 4 −

RESEARCH BULLETIN　No.86

		  1 2{ , , , }.m  = 

Th�eorem 2.4   (O― sawa [2], [6])  Suppose that a Markov chain X has the set of atoms as above and the 

transition probability P satisfying

		  { }( ,{ }) 0, ,  1,2, , .i iP x x S i m> Î - =  

Then X is reversible if and only if there exists constants 0ic >  such that

		  1 2 2 1( ( 1 )( ) ( ( 1 )( ),
j ii i j jc P f P f P c P f P f P  =

for any , 1, 2,i j=  , m, and 1 2, ( )f f B SÎ .

Re�mark 2.4   Consider the Markov chain X in Remark 2.2 having a state such that ( , ) 0p i  >  for 

any i ZÎ . Then X is reversible under the condition;

		  ( , ) ( , ) ( , ) ( , ) ( , ) ( , ),  , .p i p i j p j p j p j i p i i j Z= Î   

3 Markov increment processes

Let { , }nU n ZÎ  be a sequence of independent identically distributed (i.i.d.) random variables. 

Consider a stochastic process { , }nX n ZÎ  defined by

		  1 ( ),  ,n n nX g X U n Z+ = + Î

where ( )g x  is a measurable function on the measurable space ( , )S F . Clearly, the process { }nX  is a 

Markov chain and said to be a Markov increment process (MIP). 

3.1 MIP on the real line

Suppose that the state space is the real line, S R= , or itʼs subset and { }nU  has a distribution 

function U(x) with a density function u(x). We make following assumptions; 

　　● u(x) is continuous at x = 0. 

　　● u(x) is differentiable at x = 0 from the right and the left. 

ln this paper, we describe time-reversibility of following processes. 

(C1) Markov Additive Process (MAP)

　　　*）Consider the function ( )g x x= , then the process { }nX , defined by

　　　 1n n nX X U+ = + , is called the Markov additive process (MAP).

　　　*）It has transition densities ( , ) ( ),  ,p x y u y x i j R= - Î .

(C2) Lindley Process (LP)

　　　*）The Lindley process is a kind of MIP defined by the function

		  ( ) max(0, ).g x x=
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　　　*）The state space is 0 [0, )R = ¥  and the state 0 is only one atom.

　　　*)Transition probabilities are given by

		
. . . ( , ) ( ), 0, 0,

( ,{0}) ( ), 0.

p d f p x y u y x x y

P x U x x

= - ³ >
= - ³

(C3) Bounded Lindley Process (BLP)

　　　*)Let K be a positive constant and consider the function

		  ( ) min(max(0, ), ).g x x K=

　　　*)The state space is [0, ]BR K=  and there are two atoms, 0 and K.

　　　*)Suppose that u(x)=0 for x K> .

　　　*)Transition probabilities are given by

		
. . . ( , ) ( ), 0 , 0 ,

( ,{0}

 

 ) ( ), 0 ,

( ,{ }) 1 ( ), 0 .

p d f p x y u y x x K y K

P x U x x K

P x K U K x x K

= - £ £ < <
= - £ <
= - - £ £

We have followings for reversibility of the above processes.

Theorem 3.1

(1) �( O― sawa [2], [6])  LP process is reversible if and only if U(x) is the two-sided exponential 

distribution given by

		
exp( ), 0,

( )
exp( ), 0.

c ax x
u x

c bx x

ì <ïï=íï - ³ïî

	  where , 0a b>  and 
ab

c
a b

=
+ . Moreover, if a b<  then LP is time-reversible. 

(2) �( O― sawa and Doi [16])  BLP process is time-reversible if and only if U(x) is the two-sided 

exponential distribution with barriers given by

		

exp( ), 0,
( )

exp( ), 0 ,

( ) exp( ),

( ) exp( ),

c ax K x
u x

c bx x K

c
U K aK

a
c

U K bK
b

ì - < <ïï=íï - £ <ïî

- = -

= -

	  where , 0a b>  and ab
c

a b
=

+
.

Re�mark 3.1   If u(x) is the symmetric probability density with respect to x = 0, then the MIP process 

is reversible but not time-reversible. Thus there are not time-reversible MIP processes.
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3.2 MIP with discrete-states

Suppose that the state space is the set of all integers or itʼs subset and  has a probability 

function Z . ln this section, we describe time-reversibility of following processes.

(D1) Markov Additive Process （ ）

　　　*)Consider the function , then the process , defined by

　　　 , is written as DMAP process.

　　　*)It has transition functions , 

(D2) Lindley Process （DLP）
　　　*)The Lindley process is a kind of MIP defined by the function

		  ( ) max(0, ).g x x=

　　　*)The state space is the set of all non-negative integers .

　　　*)Transition probabilities are given by

		
0

0

, , 0,

( , )
( ) , , 0.

j i

i

k
k

u i j

p i j
U i u i j

-

-

=-¥

ì Î >ïïïï=íï - = Î =ïïïî
å

N

N

(D3) Bounded Lindley Process （DBL）
　　　*)Let  be a positive integer and consider the function

		  ( ) min(max(0, ), ).g x x J=

　　　*)The state space is .

　　　*)Suppose that  for .

　　　*)Transition probabilities are given by

		
, , {0},

( , )
( ) , , 0.

j i B B

i

k B
k J

u i j

p i j
U i u i j

-

-

=-

ì Î Î -ïïïï=íï - = Î =ïïïî
å

N N

N

Theorem 3.2

(1) �(O― sawa [2], [6], O― sawa and Shima [12])  DLP process is reversible if and only if Z  

is the two-sided geometric distribution given by

		

1

1

, 1,2, ,

, 0,

, 1, 2, ,

k

k
k

ap k

u c k

bq k

-

- -

ìï =ïïï= =íïïï =- -ïî




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	  where ,  and  satisfy 

  1 and .
1 1
a b

c aq bp
p q
+ + = =

- -

Moreover, if  then DLP is time-reversible. 

(2) �(O― sawa and Zhang [18])  DBLP process is time-reversible if and only if  is the 

distribution given by

		

1

1

1

1

, 1,2, , 1,

, 0,

, 1, 2, , 1,

( ) ,
1

( ) ,
1

k

k
k

J
J

J
J

ap k J

u c k

bq k J

b
u U J q

q

a
u U J p

p





-

- -

-
-

-

ìï = -ïïï= =íïïï =- - - +ïî

= - =
-

= =
-

	  where ,  and  satisfy 

		  1.
1 1
a b

c
p q
+ + =

- -

Re�mark 3.2   (O― sawa and Zhang [18]) In DBLP process, if  the process is time-reversible. 

Moreover, in the case of  the process is time-reversible if and only if the following relations 

holds;

		  1 1 2 2 2 1 2 1( ) ( ) .u u u u u u u u- - - -+ = +

Re�mark 3.3   If  is the symmetric distribution with respect to , then DMAP process 

is reversible but not time-reversible. Thus there are not time-reversible DMAP processes.

4. Reversibility of queueing processes

In this section, we describe reversibility of following queueing processes.

[1] Waiting-time process in the ordinary queue

Consider the single server queue . Let  be the service time of n th customer and 

 be the interarrival time between n th and  th customers. Assume that  is a 

sequence of i.i.d. random variables with the common distribution function . And  is also a 

sequence of i.i.d. random variables with the common distribution function . Let , 

then the waiting-time process is formulated by the  process. Applying Theorem 3.1(1) yields that 

the waiting-time process in  is reversible if and only if both  and  are exponential  
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distributions, that is,  (O― sawa [2], [6]).
[2] Waiting-time process in the discrete-time queue

Consider the discrete-time queue . Assume that the service time  of n th 

customer has a distribution , and the interarrival time between n th and  th 

customers  has a distribution . By letting , the waiting-time process 

 is described by . And we have the following.
For the waiting-time process in the discrete-time  queues, the reversible one is only 

for the , that is,  and  are geometric distributions (O― sawa [12], [13]).

[3] Quasi-reversibility

In the above systems, we can see the property that the departure process is the same 

probability law as the arrival process. This is called the quasi-reversibility. This property has the 

essential role that the system has the product-form solution in queueing networks with time-

reversible nodes.

5. Quasi-reversibility

In the above sections, we found that there are few systems having time-reversibility. However, 

it is known that there are many systems having quasi-reversibility (O― sawa [6], [7], [8], [10], [17], [19]).

Consider the discrete-time storage model with discrete states as follows. Let  be the 

number of arriving items just after time n, and  be the number of departures at the end of n 

th slot. Then the system states , the number of items at n th time epoch, is defined by

		  1 1n n n nX X A D+ += + -

Suppose that  depends only on the system state just after n th time epoch, i.e., 

,

		
1

1

P[ | , , , ]

P[ | ]

( , ),  0 ,  0.

n m m m

n n n

D j X A D m n

D j X A i

D i j j i i

+

+

= £

= = + =

= £ £ ³

Consider the departure rule 

		  ( , ) ( ) ( ) ( ),  0 ,  0,D i j c i r i j j j i i= - £ £ ³

where   are non-negative real-valued functions and  is determined by 

		
1

0

( ) ( ) ( ) , 0.
i

j

c i r i j j i
-

=

ì üï ïï ï= - ³í ýï ïï ïî þ
å
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Further, we assume that  for  and . This departure rule is called 

D-rule. Then we have the following. 

Th�eorem 5.1   (O―sawa [9], [19]) The discrete-time storage model with D-rule has the following 

properties; 
●  the past of the departure process  is independent of the present state , 
● �the future of the arrival process  is independent of the present state , 
● the departure  and the arrival  have the same distribution. 

The system having the properties in Theorem 5.1 is said to be quasi-reversible, see Kelly [1]. 

Moreover, we have the following. 

Th�eorem 5.2  (O― sawa [9], [19]) The discrete-time storage model has quasi-reversibility if and only if the 

departure rule is D-rule. 

6. Comments

This paper reviewed some results on reversibility of Markov chains with applications to 

Markov models, queues, queueing networks, storage models, and so on. Further, some new results 

are introduced and these works are in preparation. The research on this theme has been continuing. 
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