Admissible vertices of contraction-critically 5-connected graphs

Kiyoshi Ando

abstract

Let G be a 5 -connected graph. An edge of a G is said to be 5 -contractible if the contraction of the edge results in a 5 -connected graph. If G has no 5 -contractible edge, then it is said to be contraction-critical. An induced subgraph A of G is said to be a fragment if $|N(A)|=5$ and $V(G)-(A \cup N(A)) \neq \emptyset$, where $N(A)$ is the neighborhood of A. For a fragment A and $x \in N(A)$, a vertex $z \in N(x) \cap N(A)$ is said to be an admissible vertex for $(x ; A)$, if the degree of z is 5 and $|N(z) \cap A| \geq 2$. We show some new properties on admissible vertices of contraction-critically 5 -connected graphs. Using admissible vertices, we give a result on the structure around a fragment whose cardinality is 2 .

Key Words: 5-connected graph, contraction-critically 5-connected, degree 5 vertex AMS classification: 05C40

Dedicated to Professor Hideo Osawa on the occasion of his retirement.

1 Introduction

In this paper, we deal with finite undirected graphs with neither self-loop nor multiple edge. For a graph G, let $V(G)$ and $E(G)$ denote the set of vertices of G and the set of edges of G, respectively. We call $|V(G)|$ and $|E(G)|$ the order of G and the size of G, respectively. Let $V_{k}(G)$ denote the set of vertices of degree k. For an edge $e \in E(G)$, we denote the set of end vertices of e by $V(e)$. For a vertex $x \in V(G)$, we denote by $N_{G}(x)$ the neighborhood of x in G. Moreover, for a subset $S \subseteq V(G)$, let $N_{G}(S)=\cup_{x \in S} N(x)-S$. We denote the degree of $x \in V(G)$ by $\operatorname{deg}_{G}(x)$. For a vertex $x \in V(G)$, we denote by $E_{G}(x)$ the set of edges incident with x. Then $\operatorname{deg}_{G}(x)=|N(x)|=\left|E_{G}(x)\right|$. When there is no ambiguity, we write $V_{k}, N(x), N(S), \operatorname{deg}(x)$ and $E(x)$ for $V_{k}(G), N_{G}(x), N_{G}(S), \operatorname{deg}_{G}(x)$ and $E_{G}(x)$, respectively. For $S \subseteq V(G)$, we let $G[S]$ denote the subgraph induced by S in G. For $S \subseteq V(G)$, we let $G-S$ denote the graph obtained
from G by deleting the vertices in S together with the edges incident with them; thus $G-S$ $=G[V(G)-S]$. A subset $S \subseteq V(G)$ is said to be a cutset of G, if $G-S$ is not connected. A cutset S is said to be a k-cutset if $|S|=k$. For a noncomplete connected graph G, the order of a minimum cutset of G is said to be the connectivity of G denoted by $\kappa(G)$. Let G be a connected graph with $\kappa(G)=k$. We denote by K_{n} the complete graph on n vertices. For graphs G and H, we write $G+H$ the join of G and H.

Let k be an integer such that $k \geq 2$ and let G be a k-connected graph with $|V(G)| \geq k+2$. An edge e of G is said to be k-contractible if the contraction of the edge results in a k-connected graph. Note that, in the contraction, we replace each resulting pair of double edges by a simple edge. If an edge is not k-contractible, then it is called k-noncontractible. Note that an edge e of G is k-noncontractible if and only if there is a k-cutset S of G such that $V(e) \subseteq S$. If G does not have a k-contractible edge, then G is said to be contraction-critically k-connected.

An induced subgraph A of G is called a fragment if $|N(A)|=k$ and $V(G)-(A \cup N(A)) \neq \emptyset$. If $|A|=i$, then a fragment A is called i-fragment. A noncontractible edge e is said to be trivial, if there is a fragment A such that $|A|=1$ and $V(e) \subseteq N(A)$. A noncontractible edge e is said to be far from trivial, if $|A| \geq \frac{1}{2}(|V(G)|-2 k)$ for any fragment A such that $V(e) \subseteq N(A)$.

Let G be a 5 -connected graph. Let $x \in V(G)$ and let A be a fragment of G such that $x \in N(A)$. For $y \in N(x) \cap A$, a vertex z is said to be an admissible vertex for ($x, y ; A$), if $z \in N(x) \cap N(y) \cap S \cap V_{5}$ and $|N(z) \cap A| \geq 2$. A vertex z is said to be an admissible vertex for $(x ; A)$, if z is an admissible vertex for $(x, y ; A)$ for some $y \in N(x) \cap A$.

It is known that every 3 -connected graph of order 5 or more contains a 3 -contractible edge [13]. There are infinitely many contraction-critically k-connected graphs for each $k \geq 4$ [12]. It is known that a 4 -connected graph G is contarction-critical if and only if G is 4-regular, and for each edge e of it, there is a triangle which contains $e[8,10]$.

Egawa determined the following sharp minimum degree condition for a k-connected graph to have a k-contractible edge.

Theorem A (Egawa [7]) Let k be an integer, let G be a k-connected graph with $\delta(G) \geq\left[\frac{5 n}{2}\right]$. Then G has a k-contractible edge, unless $2 \leq k \leq 3$ and G is isomorphic to K_{k+1}.

There are infinitely many contraction-critically 5 -connected graphs which are not 5 -regular. However, by virtue of Theorem A, we know that the minimum degree of a contraction-critically 5 -connected graph is 5 .

The following result due to Su says that there are degree 5 vertices everywhere in a
contraction-critically 5-connected graph.

Theorem B (Su [11]) Every vertex of a contraction-critically 5-connected graph has two neighbors of degree five.

Since a contraction-critically 4 -connected graph is 4 -regular, it has very restricted substructure. On the other hand, for any given graph, there is a contraction-critically 5 -connected graph which has it as an induced subgraph.

Theorem C (Ando and Kawarabayashi [6]) Let k be an integer such that $k \geq 5$ and let H be a graph. Then, we can construct a contraction-critically k-connected graph which contains H as an induced subgraph.

Theorem C indicates the big difference between 'contraction-critically 4-connected graphs' and 'contraction-critically 5 -connected graphs'. As Kriesell wrote in [9], it is probably a tremendously hard problem to characterize contraction-critically k-connected graphs for $k \geq 5$. Although we still do not have enough knowledge of the global structure of contraction-critically 5 -connected graphs, we have a local structure theorem on contraction-critically 5 -connected graphs [1] and we also have some progress on the study of contraction-critically 5 -connected graphs [$3,4,5,6]$. In the last decade, in the study of contraction-critically 5 -connected graphs, 'admissible vertices' play crucial roles. In this paper we focus on admissible vertices of contraction-critically 5 -connected graphs and we show some new conditions for a contraction-critically 5 -connected graph to have an admissible vertex. Furthermore, using admissible vertices, we prove the following Theorem 1 which shows the remarkable structure around a connected 2 -fragment of a contraction-critically 5 -connected graph.

Theorem 1 Let G be a contraction-critically 5-connected graph. Let A be a connected fragment of G with $|A|=2$, say $A=\left\{x_{1}, x_{2}\right\}$ and let $S=N(A)$.
(1) If $A \cap V_{6} \neq \emptyset$, then the number of vertices $y \in S$ such that there is an admissible vertex for $(y ; A)$ is greater than or equal to 4 .
(2) If $A \cap V_{6} \neq \emptyset$, then the number of admissible vertices for some $(y ; A)$ is greater than or equal to 3.
(3) If $A \cap V_{6}=\emptyset$, then there is a vertex $y \in S-N\left(x_{1}\right) \cap N\left(x_{2}\right)$ such that there is an admissible vertex for $(y ; A)$.

This paper consists of 4 sections. After presenting preliminary results in section 2, we give some sufficient conditions for the existence of admissible vertices for given pair (x, A), where A is a fragment of a contraction-critically 5 -connected graph and $x \in N(A)$, in section 3 . In section 4 , we give a proof of Theorem 1.

To conclude the section, we present three contraction-critically 5 -connected graphs. The first one is 5 -regular, and for each edge e of it, there is a triangle which contains e. Hence, this graph is similar in structure to contraction-critically 4 -connected graphs. The second one has large maximum degree. The last one has an edge which is far from trivial. We observe that every edge in a contraction-critically 4 -connected graph is trivial and, every edge of the first example and the second example is trivial. However the number of non-trivial noncontractible edges of the last example is proportional to the size of it.

Example 1

Identifying the top and the bottom, and the left side and the right side of the graph in Fig 1, we obtain a 5 -regular contraction-critically 5 -connected graph for each edge e of which, there is a triangle containing e.

Fig.1: A contraction-critically 5-connected graph similar in structure to contraction contractioncritically 4-connected graphs

Example 2

Let H be a contraction-critically 4 -connected graph and let $G=H+K_{1}$. Then, we observe that G is 5 -connected and every edge of G is trivially 5 -noncontractible. Hence G is a contraction-
critically 5-connected graph with $\Delta(G)=|V(G)|-1$.

Example 3

Let K_{4}^{-}stand for the graph obtained from K_{4} by removing one edge; that is $K_{4}-\cong K_{2}+2 K_{1}$. Let m be an integer such that $m \geq 3$ and we construct $G^{(m)}$ as follows; At first we prepare a configuration H_{m} which consists of m copies of K_{4}^{-}(see in Fig.2). Next take other three distinct vertices and join them to bottom part vertices of H_{m}. At last take two distinct K_{4}^{-}'s and join one K_{4}^{-}to the left side 2 vertices of H_{m} and the three distinct vertices, and join the other K_{4}^{-}to the right side 2 vertices of H_{m} and the three distinct vertices, appropriately (see Fig.3).

Fig.2: H_{6}

We call the resulting graph $G^{(m)}$. Let e be an edge of the top part of H_{m}. Then we observe that there is a 5 -cutset of $G^{(m)}$ consisting of $V(e)$ and the distinct three vertices. Moreover, we observe that this is the only 5 -cutset in $G^{(m)}$ which contains $V(e)$. By these observations, we know that $G^{(m)}$ is a contraction-critically 5 -connected graph and it has a far from trivial edge and many non-trivial 5-noncontractible edges.

Fig.3: $G^{(6)}$: contraction-critically 5-connected graph with many non-trivial edges

2 Preliminaries

In this section we give some more definitions and preliminary results.
For a graph G, we denote $|G|$ for $|V(G)|$. For a subgraphs A and B of a graph G, when there is no ambiguity, we write simply A for $V(A)$ and B for $V(B)$. So $N(A)$ and $A \cap B$ mean $N(V(A))$ and $V(A) \cap V(B)$, respectively. Also for a subgraph A of G and a subset S of $V(G)$ we write $A \cap S$ and $A \cup S$ for $V(A) \cap S$ and $V(A) \cup S$, respectively. When there is no ambiguity, we write $E(S)$ for $E(G[S])$. For subset S and T of $V(G)$, we denote the set of edges between S and T by $E_{G}(S, T)$. We write $E_{G}(x, T)$ for $E_{G}(\{x T\})$. When there is no ambiguity, we write $E(S, T)$ and $E(x, T)$ for $E_{G}(S, T)$ and $E_{G}(x, T)$, respectively. Let $V_{\geq k}(G)$ (or sometimes simply $V_{\geq k}$) denote the set of vertices of degree at least k.

Let G be a connected graph with $\kappa(G)=k$. Recall that an induced subgraph A of G is called a fragment if $|N(A)|=k$ and $V(G)-(A \cup N(A)) \neq \emptyset$. In other words, a fragment A is a nonempty union of components of $G-S$ where S is a k-cutset of G such that $V(G)-(A \cup S) \neq \emptyset$. By the definition, if A is a fragment of G, then $G-(A \cup N(A))$ is also a fragment of G. Let \bar{A} stand for $G-(A \cup N(A))$. For an edge e of G, a fragment A of G is said to be a fragment with respect to e if $V(e) \subseteq N(A)$. For a set of edges $F \subseteq E(G)$, we say that A is a fragment with respect to F if A is a fragment with respect to some $e \in F$. A fragment A with respect to F is said to be minimum (resp. minimal) if there is no fragment B other than A with respect to F such that $|B|<|A|$ (resp. $B \subsetneq A)$. If $|A|=1$, then a fragment A is said to be trivial.

Let $V_{k}^{(i)}(G)$ (or sometimes simply $V_{k}^{(i)}$) stand for the set of vertices of $V_{k}(G)$ each of which has i neighbors in $V_{k}(G)$, namely $V_{k}^{(i)}=\left\{x \in V_{k}(G)| | N(x) \cap V_{k}(G) \mid=i\right\}$.

We start with the following Lemma 1 [3] which is a simple but useful observation. We give a proof of Lemma 1 for the reader's convenience.

Lemma 1 Let A be a fragment of a k-connected graph G and let $S \subseteq N(A)$. If $|N(S) \cap A|<|S|$, then $A=N(S) \cap A$.

Proof. Assume that $A \neq N(S) \cap A$. Let $A^{\prime}=A-(N(S) \cap A)$. Since $A^{\prime} \neq \emptyset$ and $T \cap(\bar{A} \cup S)=\emptyset,(N(A)-S) \cup(N(S) \cap A)$ separates A^{\prime} and $\bar{A} \cup S$. Since $|N(S) \cap A|<|S|$, we see that $\quad|(N(A)-S) \cup(N(S) \cap A)=|N(A)|-|S|+|N(S) \cap A|<|N(A)|=k$, which contradicts the k-connectedness of G.

The reader can find the proof of Lemma 2 in [3].

Lemma 2 Let G be a 5-connected graph, and let A and B be fragments of G. Let $S=N(A)$ and let $T=N(B)$.

B	$\bar{A} \cap B$	$S \cap B$	$A \cap B$
T	$\bar{A} \cap T$	$S \cap T$	$A \cap T$
\bar{B}	$\bar{A} \cap \bar{B}$	$S \cap \bar{B}$	$A \cap \bar{B}$
	\bar{A}	S	A

Then the following hold.

(1) If $|(S \cap B) \cup(S \cap T) \cup(A \cap T)| \geq 6$, then $|(\bar{A} \cap T) \cup(S \cap T) \cup(S \cap \bar{B})| \leq 4$ and $\bar{A} \cap \bar{B}=\emptyset$. In particular, if neither $A \cap B$ nor $\bar{A} \cap \bar{B}$ is empty, then both $A \cap B$ and $\bar{A} \cap \bar{B}$ are fragments of G.
(2) $|(S \cap B) \cup(S \cap T) \cup(A \cap T)|=5+|S \cap B|-|\bar{A} \cap T|$. In particular, if $A \cap B \neq \emptyset$, then $|S \cap B| \geq|\bar{A} \cap T|$.
(3) If $|\bar{A}| \geq 2$, then either $|(S \cap B) \cup(S \cap T) \cup(A \cap T)| \leq 5$ or $|(S \cap \bar{B}) \cup(S \cap T) \cup(A \cap T)|$ ≤ 5.

3 Admissible vertices

In the following two sections we consider 5 -connected graphs.
We introduce 'admissible vertex' in [3] and we introduce 'strongly admissible vertex' and 'hyper admissible vertex' in [2]. In this paper, we introduce 'insufficient' and give a new sufficient condition a contraction-critically 5 -connected graph to have an admissible vertex.

Let G be a 5 -connected graph. Let $x \in V(G)$ and let A be a fragment of G such that $x \in N(A)$. Let $S=N(A)$.

Let $y \in N(x) \cap A$. Recall that a vertex z is said to be an admissible vertex for ($x, y ; A$), if the following two conditions hold.
(1) $z \in N(x) \cap N(y) \cap S \cap V_{5}$.
(2) $|N(z) \cap A| \geq 2$.

Here, we introduce more detailed properties of admissible vertices.
For $y \in N(x) \cap A$, a vertex z is said to be an strongly admissible vertex for $(x, y ; A)$, if the following conditions hold.
(1) $z \in N(x) \cap N(y) \cap S \cap V_{5}$,
(2) $|N(z) \cap A| \geq 2$, and
(3) $|N(z) \cap \bar{A}|=1$.

For $y \in N(x) \cap A$, a vertex z is said to be an hyper admissible vertex for $(x, y ; A)$, if the following conditions hold.
(1) $z \in N(x) \cap N(y) \cap S \cap V_{5}$,
(2) $|N(z) \cap A| \geq 2$, and
(3) $|N(z) \cap \bar{A}|=|N(z) \cap S|=1$.

A vertex z is said to be a strongly admissible vertex for $(x ; A)$ or a hyper admissible vertex for $(x ; A)$, if z is a strongly admissible vertex for $(x, y ; A)$ or a hyper admissible vertex for $(x, y ; A)$ for some $y \in N(x) \cap A$, respectively.

A triangle H of G is said to be an A-inner x^{*}-triangle if (1) $x \in V(H)$, (2) $V(H)-\{x\} \subseteq A$ and (3) $(V(H)-\{x\}) \cap V_{5} \neq \emptyset$.

A vertex x is said to be insufficient on A if the following two conditions hold.
(1) there is no A-inner x^{*}-triangle.
(2) $N(u) \cap N\left(u^{\prime}\right) \cap A \cap V_{5}=\emptyset$ for any $u, u^{\prime} \in N(x) \cap A \cap V_{5}$.

The following Lemmas 3 and 4 give some basic properties of admissible vertices in a contraction-critically 5 -connected graph. The reader can find proofs of Lemmas 3 and 4, and Corollary 7 in [3], however for the convenience of the reader, we give proofs of Lemmas 3 and 4 . We give an alternate proof of Corollary 7 in this section.

Lemma 3 ([3] Corollary 4) Let x be a vertex of a contraction-critically 5-connected graph G. Let A be a fragment of G such that $x \in N(A)$. Suppose $|\bar{A}| \geq 2,|A| \geq 3$ and $|N(x) \cap A|=1$. Then, there is an admissible vertex for $(x ; A)$

Proof. Let $N(x) \cap A=\{y\}$. Let B be a fragment with respect to $x y$. Let $S=N(A)$ and let $T=N(B)$. Since $|\bar{A}| \geq 2$, by Lemma 2 (3), we see that either $|(S \cap B) \cup(S \cap T) \cup(A \cap T)| \leq 5$ or $|(S \cap \bar{B}) \cup(S \cap T) \cup(A \cap T)| \leq 5$. Without loss of generality we may assume $\mid(S \cap B) \cup(S \cap T) \cup$ $\cup(A \cap T) \mid \leq 5$. Then, since $N(x) \cap A=\{y\}$, we have $A \cap B=\emptyset$.

Claim 3.1 $|(S \cap \bar{B}) \cup(S \cap T) \cup(A \cap T)| \geq 6$.
Proof. If $A \cap \bar{B} \neq \emptyset$, then $|(S \cap \bar{B}) \cup(S \cap T) \cup(A \cap T)| \geq 6$ since $N(x) \cap A=\{y\}$. Hence, we assume $A \cap \bar{B}=\emptyset$. Then, since $A \cap B=\emptyset$, we have $A=A \cap T$ and $|A|=|A \cap T| \geq 3$, which
implies that $|A \cap T|>|S \cap B|$ since $|(S \cap B) \cup(S \cap T) \cup(A \cap T)| \leq 5$.
Hence we observe that $|(S \cap \bar{B}) \cup(S \cap T) \cup(A \cap T)|>|S|=5$ and Claim 3.1 is proved.
Claim 3.1 assures us that $|A \cap T|>|S \cap B|$. If $\quad|S \cap B| \geq 2$, then $|A \cap T| \geq 3$ and $|(S \cap B) \cup(S \cap T) \cup(A \cap T)| \geq 6$, which contradicts the fact that $|(S \cap B) \cup(S \cap T) \cup(A \cap T)| \leq 5$. Hence $|S \cap B| \leq 1$. Claim 3.1 also assures us that $\bar{A} \cap B=\emptyset$ and $B=S \cap B$. Let $B=S \cap B=\{z\}$. Then we observe that z is an admissible vertex for $(x ; A)$.

Lemma 4 ([3] Lemma 3) Let x be a vertex of a contraction-critically 5-connected graph G. Let A be a fragment such that $x \in N(A),|\bar{A}| \geq 2$ and $|A| \geq 3$. Then, for each vertex $y \in N(x) \cap A$, there is either an admissible vertex for $(x, y ; A)$ or a fragment A^{\prime} with respect to $x y$ such that $A^{\prime} \subsetneq A$.

Proof. Assume that there is neither an admissible vertex for $(x, y ; A)$ nor a fragment A^{\prime} with respect to $x y$ such that $A^{\prime} \subsetneq A$. Let B be a fragment with respect to $x y$. Let $S=N(A)$ and let $T=N(B)$. Since $|\bar{A}| \geq 2$, by Lemma 2 (3), we see that either $|(S \cap B) \cup(S \cap T) \cup(A \cap T)| \leq 5$ or $|(S \cap \bar{B}) \cup(S \cap T) \cup(A \cap T)| \leq 5$. Without loss of generality we may assume $\mid(S \cap B) \cup(S \cap T) \cup$ $(A \cap T) \mid \leq 5$. If $A \cap B \neq \emptyset$, then $A \cap B$ is a fragment with respect to $x y$ such that $A \cap B \subsetneq A$ since $y \in A \cap T$, which contradicts the assumption. Hence $A \cap B=\emptyset$.

Claim 4.1 $A \cap \bar{B} \neq \emptyset$.
Proof. Assume $A \cap \bar{B}=\emptyset$. Then $A=A \cap T$ and $|A \cap T|=|A| \geq 3$. Hence $|S \cap B|=$ $|(S \cap B) \cup(S \cap T) \cup(A \cap T)|-|S \cap T|-|A \cap T| \leq 5-1-3=1$. Thus $|S \cap B|=1$, say $S \cap B=\{z\}$. Then, we find that z is an admissible vertex for $(x, y ; A)$, which contradicts the assumption.

By Claim 4.1, we know that $A \cap \bar{B} \neq \emptyset$. Hence, if $|(S \cap \bar{B}) \cup(S \cap T) \cup(A \cap T)|=5$, then $A \cap \bar{B}$ a fragment with respect to $x y$ such that $A \cap \bar{B} \subsetneq A$, which contradicts the assumption. Thus we have $|(S \cap \bar{B}) \cup(S \cap T) \cup(A \cap T)| \geq 6$, which implies $\bar{A} \cap B=\emptyset$ and $|S \cap B|<|A \cap T|$. Therefore, $\quad B=S \cap B$ and $\quad|S \cap B|=|(S \cap B) \cup(S \cap T) \cup(A \cap T)|-|S \cap T|-|A \cap T| \leq 4-|A \cap T|<4-$ $|S \cap B|$. Hence we have $|B|=|S \cap B|=1$, say $B=S \cap B=\{z\}$. Then, we again find that z is an admissible vertex for $(x, y ; A)$, which contradicts the assumption. This contradiction proves Lemma 4.

Lemma 5 Let x be a vertex of a contraction-critically 5 -connected graph G. Let A be a fragment with respect to $E(x)$ such that $|\bar{A}| \geq 2,|A|=2$. If there is neither an A-inner x^{*}-triangle nor an admissible vertex for $(x ; A)$, then, $A \subseteq V_{5}$.

Proof. Let $A=\left\{u, u^{\prime}\right\}$ and assume that either $u \notin V_{5}$ or $u^{\prime} \notin V_{5}$. Let $S=N(A)$ $=\left\{x, w, w^{\prime}, w^{\prime \prime}, w^{\prime \prime \prime}\right\}$. We may assume $u \in N(x) \cap A$. Since A is a fragment with respect to $E(x)$, we also assume that $w \in N(x) \cap S$.

Claim 5.1 $S-\{x\} \subseteq N\left(u^{\prime}\right)$.
Proof. If $u^{\prime} \notin V_{5}$, then $N\left(u^{\prime}\right)=S \cup\{u\}$ and we are done. Hence assume $u^{\prime} \in V_{5}$. If $u^{\prime} x \in E(G)$, then we see that $G\left[\left\{x, u, u^{\prime}\right\}\right]$ is an A-inner x^{*}-triangle, which violates the assumption. Hence $u^{\prime} x \notin E(G)$, which implies the desired conclusion, $S-\{x\} \subseteq N\left(u^{\prime}\right)$.

Let B be a fragment with respect to $x u$ and let $T=N(B)$.

Claim 5.2 (1) $u^{\prime} \in T$ and (2) $|S \cap B|=|S \cap \bar{B}|=2$.
Proof. (1) By Claim 5.1, we see that $S-\{x\} \subseteq N\left(u^{\prime}\right)$, which implies $u^{\prime} \in T$.
(2) Assume $|S \cap B| \leq 1$. Then $\bar{A} \cap B=\emptyset$ since $|S \cap B|<|A \cap T|$. If $S \cap B=\emptyset$, then $B=\emptyset$, which contradicts the choice of B. Hence assume $|S \cap B|=1$ and let $S \cap B=\{y\}$. Then we see that y is an admissible vertex for $(x ; A)$, which contradicts the assumption. Hence $|S \cap B| \geq 2$. Similarly we see $|S \cap \bar{B}| \geq 2$. Then, since $S \cap T \neq \emptyset$, we have $|S \cap B|=|S \cap \bar{B}|=2$.

By Claim 5.2 (2), we may assume that $S \cap B=\left\{w, w^{\prime}\right\}$ and $S \cap \bar{B}=\left\{w^{\prime \prime}, w^{\prime \prime \prime}\right\}$.

Claim 5.3 If $u w \in E(G)$, then $w \notin V_{5}$.
Proof. Assume that $u w \in E(G)$ and $w \in V_{5}$. Then, by Claim 5.1, we see that $u^{\prime} w \in E(G)$. This implies w is an admissible vertex for $(x ; A)$, which contradicts the assumption.

Claim $5.4 u \in V_{5}$.
Proof. Assume $u \notin V_{5}$. Then $N(u)=S \cup\left\{u^{\prime}\right\}$. Hence $u w \in E(G)$ and Claim 4.3 assures us that $w \notin V_{5}$. By Claim 5.1, we know that $u^{\prime} w^{\prime} \in E(G)$. Let C be a fragment with respect to $u^{\prime} w^{\prime}$ and let $R=N(C)$. Then, since $S \subseteq N(u)$, we see that $u \in R$, which implies $\left\{u, u^{\prime}\right\} \subseteq T \cap R$.

Subclaim 5.4.1 $w \in R$.

Proof. Assume $w \notin R$. Without loss of generality we may assume that $w \in C$. Then, since $x w \in E(G)$, we observe that $x \in R \cup C$. Since $S \cap \bar{C} \neq \emptyset$ we see that $\left\{w^{\prime \prime}, w^{\prime \prime \prime}\right\} \cap \bar{C} \neq \emptyset$, which implies $(\bar{B} \cap \bar{C}) \cap\left\{w^{\prime \prime}, w^{\prime \prime \prime}\right\} \neq \emptyset$ since $\left\{w^{\prime \prime}, w^{\prime \prime \prime}\right\} \subseteq \bar{B}$. Now we observe that $w \in B \cap C$ and
$(\bar{B} \cap \bar{C}) \cap\left\{w^{\prime \prime}, w^{\prime \prime \prime}\right\} \neq \emptyset$, which implies that $|(R \cap B) \cup(R \cap T) \cup(C \cap T)|=5$. Hence $B \cap C$ is a fragment of G. Since $\left\{w^{\prime \prime}, w^{\prime \prime \prime}\right\} \subseteq \bar{B}, x \in T$ and $w^{\prime} \in R$, we see that $N\left(\left\{u, u^{\prime}\right\}\right) \cap(B \cap C)=\{w\}$. Hence, applying Lemma 1 with the roles of A and S replaced by $B \cap C$ and $\left\{u, u^{\prime}\right\}$, respectively, we see that $C \cap B=\{w\}$. This implies $w \in V_{5}$, which contradicts Claim 5.3. This contradiction proves Subclaim 5.4.1.

Subclaim 5.4.2 (1) $x \in V_{5}$, and (2) $x u^{\prime}, x w^{\prime} \in E(G)$.
Proof. (1) By Subclaim 5.4.1, we know that $\left\{w, w^{\prime}\right\} \subseteq S \cap R$, which implies either $|S \cap C|=1$ or $|S \cap \bar{C}|=1$. Without loss of generality we may assume that $|S \cap C|=1$, say $S \cap C=\{z\}$. Then $z \in\left\{x, w^{\prime \prime}, w^{\prime \prime \prime}\right\}$. Since $|S \cap C|<|A \cap R|$, Lemma 2 (2) assures us that $\bar{A} \cap C=\emptyset$, which implies $C=S \cap C=\{z\}$. Hence $z \in V_{5}$ and $z w \in E(G)$. Since $w w^{\prime \prime}, w w^{\prime \prime \prime} \notin$ $\notin E(G)$, we see that $z=x$ and $x \in V_{5}$.
(2) Since $N(x)=R$, we observe that $x u^{\prime}, x w^{\prime} \in E(G)$.

Subclaim 5.4.3 $\quad w w^{\prime} \in E(G)$.
Proof. Since $|A \cap T|=|S \cap B|=2$, we see that $|(\bar{A} \cap T) \cup(S \cap T) \cup(S \cap B)|=5$. Let $N(x)=\left\{u, u^{\prime}, w, w^{\prime}, v\right\}$. Since $N(x) \cap \bar{A} \neq \emptyset$ and $\left\{u, u^{\prime}, w, w^{\prime}\right\} \subseteq(A \cap T) \cup(S \cap B)$, we observe that $v \in \bar{A} \cap \bar{B}$, which implies $\quad N(x) \cap(\bar{A} \cap B)=\emptyset$. Since $\quad|(\bar{A} \cap T) \cup(S \cap T) \cup(S \cap B)|=5$ and $N(x) \cap(\bar{A} \cap B)=\emptyset$, we see that $\bar{A} \cap B=\emptyset$, which implies $B=S \cap B=\left\{w, w^{\prime}\right\}$. Since $w \notin V_{5}$ and $B=\left\{w, w^{\prime}\right\}$, we have $w w^{\prime} \in E(G)$.

We proceed with the proof of Claim 5.4. Now we observe that $G[N(x)-\{v\}] \cong K_{4}$, which implies $x v$ is contractible. This contradicts that G is contraction-critically 5 -connected and Claim 5.4 is proved.

By Claim 5.4, we have $u \in V_{5}$. Hence $u^{\prime} \notin V_{5}$. But, in this situation, we see that $G\left[\left\{x, u, u^{\prime}\right\}\right]$ is an A-inner x^{*}-triangle, which contradicts the assumption. This contradiction proves Lemma 5.

Recall that an vertex x is said to be insufficient on a fragment A if (1) there is no A-inner x^{*} -triangle and (2) $N(u) \cap N\left(u^{\prime}\right) \cap A \cap V_{5}=\emptyset$ for any $u, u^{\prime} \in N(x) \cap A \cap V_{5}$.

The following Lemma 6 says that " x is insufficient on A " is an sufficient condition for the existence of an admissible vertex for $(x ; A)$.

Lemma 6 Let x be a vertex of a contraction-critically 5 -connected graph G. Let A be a fragment
such that $x \in N(A),|\bar{A}| \geq 2$ and $|A| \geq 3$. If x is insufficient on A, then there is an admissible vertex for $(x ; A)$.

Proof. We prove Lemma 6 by the induction on $|N(x) \cap A|$. If $|N(x) \cap A|=1$, then Lemma 3 assures us that the desired conclusion holds. Assume $|N(x) \cap A| \geq 2$ and also assume that there is no admissible vertex for $(x ; A)$. Choose $y \in N(x) \cap A$ so that $\operatorname{deg}_{G}(y)$ to be as small as possible. Since there is no admissible vertex for $(x, y ; A)$, Lemma 5 assures us that there is a fragment A^{\prime} with respect to $x y$ such that $A^{\prime} \subsetneq A$.

Claim 6.1 $\left|A^{\prime}\right|=2$.
Proof. At first assume $\left|A^{\prime}\right|=1$, say $A^{\prime}=\{u\}$. Then $u \in V_{5}, \quad\{x, y\} \subseteq N(u)$ and $A=\{y, u\}$. In this situation, we observe that $G[\{x, y, u\}]$ is an A-inner x^{*}-triangle, which violates the fact that x is insufficient on A.

Next assume $\left|A^{\prime}\right| \geq 3$. Then $\left|A^{\prime}\right| \geq 3$ and $\left|\bar{A}^{\prime}\right|>|\bar{A}| \geq 2$. Since x is insufficient on A and $A^{\prime} \subsetneq A, x$ is also insufficient on A^{\prime}. Since $y \in N(x) \cap A$ and $y \notin N(x) \cap A^{\prime}$, we see that $\left|N(x) \cap A^{\prime}\right|<|N(x) \cap A|$. Hence, applying the induction hypothesis to A^{\prime}, we see that there is an admissible vertex z for $\left(x ; A^{\prime}\right)$. Since $A^{\prime} \subsetneq A, N\left(A^{\prime}\right) \subseteq S \cup A$, which implies $z \in S \cup A$. We show $z \in S$. Assume that $z \in A$. Since z is an admissible vertex for $\left(x ; A^{\prime}\right)$, there is a vertex $u \in N(x) \cap N(z) \cap A^{\prime}$. Then, since $z \in A \cap V_{5}$ and $u \in A^{\prime} \subsetneq A$, we observe that $G[\{x, z, u\}]$ is an A-inner x^{*}-triangle, which violates the fact that x is insufficient on A. Now it is shown that $z \in S$, which implies that z is an admissible vertex \boldsymbol{z} for $(x ; A)$. This contradicts the assumption and Claim 6.1 is proved.

By Claim 6.1 we know $\left|A^{\prime}\right|=2$, say $A^{\prime}=\left\{u, u^{\prime}\right\}$. We may assume that $x u \in E(G)$. Since $A^{\prime} \subsetneq A$ and there is no A-inner x^{*}-triangle, we see there is no A^{\prime}-inner x^{*}-triangle. Assume that there is an admissible vertex z for $\left(x ; A^{\prime}\right)$. Then $z \in V_{5}$ and $N(x) \cap N(z) \cap A^{\prime} \neq \emptyset$. If $z \in A$, then we find an A-inner x^{*}-triangle, which contradicts the assumption. Hence $z \in S$ and z is an admissible vertex for $(x ; A)$, which again contradicts the assumption. It is shown that there is no admissible vertex for $\left(x ; A^{\prime}\right)$. Hence, there is neither an A^{\prime}-inner x^{*}-triangle nor an admissible vertex for $\left(x ; A^{\prime}\right)$. Thus Lemma 4 assures us that $u, u^{\prime} \in V_{5}$. Recall that we choose y so that $\operatorname{deg}_{G}(y)$ to be as small as possible. Hence, we see that $y \in V_{5}$ since $u \in N(x) \cap A \cap V_{5}$. Since there is no A-inner x^{*}-triangle and $y, u \in N(x) \cap A \cap V_{5}$, we see that $y u \notin E(G)$, which implies $u u^{\prime} \in E(G)$ since $A^{\prime}=\left\{u, u^{\prime}\right\}$. If $x u^{\prime} \in E(G)$, then $G\left[\left\{x, u, u^{\prime}\right\}\right]$ is an A-inner x^{*}-triangle, which contradicts the assumption. Hence $x u^{\prime} \notin E(G)$, which implies $y u^{\prime} \in E(G)$. Now we observe that $y, u \in N(x) \cap A \cap V_{5}$ and $u^{\prime} \in N(y) \cap N(u) \cap A \cap V_{5}$, which contradicts the assumption that x is
insufficient on A. This contradiction completes the proof of Lemma 6 .

We note that, in the definition of 'insufficient', the condition "(2) $N(u) \cap N\left(u^{\prime}\right) \cap A \cap V_{5}=\emptyset$ for any $u, u^{\prime} \in N(x) \cap A \cap V_{5}$ " is necessary. There is a contraction-critically 5-connected graph G which has a vertex x and a fragment A such that $x \in N(A),|\bar{A}| \geq 2$ and $|A| \geq 3$ and G has neither an admissible vertex for $(x ; A)$ nor an A-inner x^{*}-triangle.

By the definition, if $N(x) \cap A \cap V_{5}=\emptyset$, then x is insufficient on A. Hence, the following is an immediate corollary of Lemma 6.

Corollary 7 ([3] Lemma 6) Let G be a contraction-critically 5-connected graph G and let A be a fragment of G with $|\bar{A}| \geq 2$ and $|A| \geq 3$. Let $x \in N(A)$. If $N(x) \cap A \cap V_{5}=\emptyset$, then there is an admissible vertex for $(x ; A)$.

Lemma 8 Let x be a vertex of a contraction-critically 5-connected graph G. Let A be a fragment such that $x \in N(A),|\bar{A}| \geq 2$ and $|A| \geq 3$. Suppose $|N(x) \cap A|=1$ and $N(x) \cap A \cap V_{5}=\emptyset$. Then,
(1) there is a strongly admissible vertex z for $(x ; A)$,
(2) if $(N(z) \cap N(A)-\{x\}) \cap\left(V_{5}-V_{5}^{(2)}\right)=\emptyset$, then z is a hyper admissible vertex for $(x ; A)$.

Proof. Let $S=N(A)$ and let $N(x) \cap A=\{y\}$. Note that $y \notin V_{5}$ since $N(x) \cap A \cap V_{5}=\emptyset$. By Lemma 3, there is an admissible vertex z for $(x, y ; A)$. Let $B=\{z\}$ and let $T=N(y)=N(B)$.

We show (1). Assume z is not strongly admissible, that is $|N(z) \cap \bar{A}| \geq 2$. Then, since $z \in V_{5}$, we see that $|N(z) \cap \bar{A}|=|N(z) \cap A|=2, S \cap T=\{x\}$ and $|S \cap \bar{B}|=3$. Let $A \cap T=\{y, u\}$ and let $S \cap \bar{B}=\left\{w, w^{\prime}, w^{\prime \prime}\right\}$. Furthermore, let $\quad A^{\prime}=A-\{y\}$ and $\quad S^{\prime}=N\left(A^{\prime}\right)=(S-\{x\}) \cup\{y\}=$ $\left\{z, y, w, w^{\prime}, w^{\prime \prime}\right\}$. Since $N(x) \cap A=\{y\}$, we observe that A^{\prime} is a fragment of G such that $\left|A^{\prime}\right|=|A-\{y\}| \geq 2$ and $\left|\bar{A}^{\prime}\right|=|\bar{A} \cup\{x\}| \geq 3$. Then, since $N(z) \cap S^{\prime}=\{y\}$ and $y \notin V_{5}$, we observe that $N(z) \cap S^{\prime} \cap V_{5}=\emptyset$, which implies that there is no admissible vertex for $\left(z ; A^{\prime}\right)$. If $\left|A^{\prime}\right| \geq 3$, then Lemma 3 assures us the existence of an admissible vertex for $\left(z ; A^{\prime}\right)$, which contradicts the previous assertion. Hence we have $\left|A^{\prime}\right|=2$, say $A^{\prime}=\left\{u, u^{\prime}\right\}$. Then $u^{\prime} \in A^{\prime} \cap \bar{B}$ and $N\left(u^{\prime}\right)=\left\{u, y, w, w^{\prime}, w^{\prime \prime}\right\}$. Moreover we observe that $N(u) \subseteq\left\{y, z, u^{\prime}, w, w^{\prime}, w^{\prime \prime}\right\}$ and $N(y) \subseteq\left\{x, z, u, u^{\prime}, w, w^{\prime}, w^{\prime \prime}\right\}$. Since $y \notin V_{5}$, we see that $\left|N(y) \cap\left\{w, w^{\prime}, w^{\prime \prime}\right\}\right| \geq 2$. Without loss of generality, we may assume that $\left\{w, w^{\prime}\right\} \subseteq N(y)$. Let B^{\prime} be a fragment with respect to $z u$ and let $T^{\prime}=N\left(B^{\prime}\right)$. Since $N(z) \cap N(u) \subseteq\{y\}$ and $y \notin V_{5}$, we see that $N(z) \cap N(u) \cap V_{5}=\emptyset$, which implies that neither B^{\prime} nor \bar{B}^{\prime} is trivial, and hence $\left|B^{\prime}\right| \geq 2$ and $\left|\bar{B}^{\prime}\right| \geq 2$. Since $S^{\prime}-\{z\} \subseteq N\left(u^{\prime}\right)$, we see that $u^{\prime} \in T^{\prime}$.

Claim $8.1 y \in T^{\prime}$.
Proof. Assume $y \notin T^{\prime}$. Without loss of generality, we may assume that $y \in B^{\prime}$. Then, since $\left\{w, w^{\prime}\right\} \subseteq N(y), \quad\left\{w, w^{\prime}\right\} \subseteq T^{\prime} \cup B^{\prime}$. Hence, we observe that $N\left(\left\{u, u^{\prime}\right\}\right) \cap \bar{B}^{\prime}=\left\{w^{\prime \prime}\right\}$. Then, assures us that $\bar{B}^{\prime}=\left\{w^{\prime \prime}\right\}$, which contradicts the previous observation that $\left|\bar{B}^{\prime}\right| \geq 2$. This contradiction proves Claim 8.1.

By Claim 8.1, we see that $\left\{y, z, u, u^{\prime}\right\} \subseteq T^{\prime}$, which implies $N(u) \cap\left(B^{\prime} \cup \bar{B}^{\prime}\right) \subseteq\left\{w, w^{\prime}, w^{\prime \prime}\right\}$ since $N(u) \subseteq\left\{y, z, u^{\prime}, w, w^{\prime}, w^{\prime \prime}\right\}$. We also observe that $N\left(u^{\prime}\right) \cap\left(B^{\prime} \cup \bar{B}^{\prime}\right) \subseteq\left\{w, w^{\prime}, w^{\prime \prime}\right\}$ since $N\left(u^{\prime}\right)=\left\{u, y, w, w^{\prime}, w^{\prime \prime}\right\}$. Since neither $N(u) \cap B^{\prime}=\emptyset$ nor $N(u) \cap \bar{B}^{\prime}=\emptyset$, we have either $\left|B^{\prime} \cap\left\{w, w^{\prime}, w^{\prime \prime}\right\}\right|=1$ or $\left|\bar{B}^{\prime} \cap\left\{w, w^{\prime}, w^{\prime \prime}\right\}\right|=1$. Without loss of generality, we may assume that $\left|B^{\prime} \cap\left\{w, w^{\prime}, w^{\prime \prime}\right\}\right|=1$, say $B^{\prime} \cap\left\{w, w^{\prime}, w^{\prime \prime}\right\}=\{\tilde{w}\}$. Then we see that $N\left(\left\{u, u^{\prime}\right\}\right) \cap B^{\prime}=\{\tilde{w}\}$ and applying Lemma 1 with the roles of A and S replaced by B^{\prime} and $\left\{u, u^{\prime}\right\}$, respectively, we see that $B^{\prime}=\{\tilde{w}\}$, which contradicts the previous observation that $\left|B^{\prime}\right| \geq 2$. This contradiction proves that z is a strongly admissible vertex for $(x, y ; A)$ and (1) is shown.

Next we show (2). Assume z is not a hyper admissible vertex for $(x ; A)$. We show $(N(z) \cap S-\{x\}) \cap\left(V_{5}-V_{5}^{(2)}\right) \neq \emptyset$. Since z is strongly admissible and not hyper admissible, we see that $\quad|N(z) \cap A|=2, \quad|N(z) \cap S|=2, \quad|N(z) \cap \bar{A}|=1 \quad$ and $\quad|S \cap \bar{B}|=2$. Let $\quad N(z) \cap A=\{y, u\}$, $N(z) \cap S=\{x, w\}, \quad N(z) \cap \bar{A}=\{v\}$ and $S \cap \bar{B}=\left\{w^{\prime}, w^{\prime \prime}\right\}$. Let $A^{\prime}=A-\{y\}$ and $S^{\prime}=N\left(A^{\prime}\right)=$ $(S-\{x\}) \cup\{y\}=\left\{z, y, w, w^{\prime}, w^{\prime \prime}\right\}$. Then $\quad A^{\prime}$ is a fragment of G such that $\left|A^{\prime}\right| \geq 2$ and $\left|\bar{A}^{\prime}\right|=|\bar{A} \cup\{x\}| \geq 3$. Note that $N(z) \cap A^{\prime}=\{u\}$.

Claim $8.2 w$ is an admissible vertex for $\left(z, u ; A^{\prime}\right)$.
Proof. At first we consider the case that $\left|A^{\prime}\right| \geq 3$. In this case we have $\left|A^{\prime}\right| \geq 3,\left|\bar{A}^{\prime}\right| \geq 3$ and $N(z) \cap A^{\prime}=\{u\}$. Thus Lemma 3 assures us the existence of an admissible vertex for $\left(z, u ; A^{\prime}\right)$. Since $N(z) \cap S^{\prime}=\{y, w\}$ and $y \notin V_{5}$, we observe that w is an admissible vertex for $\left(z, u ; A^{\prime}\right)$.

Next we consider the case that $\left|A^{\prime}\right|=2$, say $A^{\prime}=\left\{u, u^{\prime}\right\}$. Since $A^{\prime} \cap B=\emptyset$ and $A^{\prime} \cap T=\{u\}$, we see that $u^{\prime} \in A^{\prime} \cap \bar{B}$ and $N\left(u^{\prime}\right)=\left\{y, u, w, w^{\prime}, w^{\prime \prime}\right\}$. Since $N(y) \subseteq S \cup A$ and $A=\left\{y, u, u^{\prime}\right\}$, the fact $y \in V_{\geq 6}$ implies $\left|N(y) \cap\left\{w, w^{\prime}, w^{\prime \prime}\right\}\right| \geq 2$. Let B^{\prime} be a fragment with respect to $z u$ and let $T^{\prime}=N\left(B^{\prime}\right)$. Since $S^{\prime}-\{z\} \subseteq N\left(u^{\prime}\right)$, we observe that $u^{\prime} \in T^{\prime}$, which implies $A^{\prime} \cap T^{\prime}=\left\{u, u^{\prime}\right\}$ and $A^{\prime} \cap B^{\prime}=A^{\prime} \cap \bar{B}^{\prime}=\emptyset$. Since $A^{\prime} \cap B^{\prime}=A^{\prime} \cap \bar{B}^{\prime}=\emptyset$, we see that neither $S^{\prime} \cap B^{\prime}=\emptyset$ nor $S^{\prime} \cap \bar{B}^{\prime}=\emptyset$. We show that either $\left|S^{\prime} \cap B^{\prime}\right|=1$ or $\left|S^{\prime} \cap \bar{B}^{\prime}\right|=1$. If $y \in S^{\prime} \cap T^{\prime}$, then $\left|S^{\prime} \cap T^{\prime}\right| \geq 2$, which implies either $\left|S^{\prime} \cap B^{\prime}\right|=1$ or $\left|S^{\prime} \cap \bar{B}^{\prime}\right|=1$. Hence assume $y \notin S^{\prime} \cap T^{\prime}$. If $y \in S^{\prime} \cap \bar{B}^{\prime}$, then, the fact that $\left|N(y) \cap\left\{w, w^{\prime}, w^{\prime \prime}\right\}\right| \geq 2$ assures us that $\left|S^{\prime} \cap B^{\prime}\right|=1$. Similarly, if $y \in S^{\prime} \cap B^{\prime}$, then we have $\left|S^{\prime} \cap \bar{B}^{\prime}\right|=1$. Now it is shown that either $\left|S^{\prime} \cap B^{\prime}\right|=1$ or $\left|S^{\prime} \cap \bar{B}^{\prime}\right|=1$.

Without loss of generality, we may assume that $\left|S^{\prime} \cap B^{\prime}\right|=1$, say $S^{\prime} \cap B^{\prime}=\{\tilde{w}\}$. Then, since $\left|S^{\prime} \cap B^{\prime}\right|<\left|A^{\prime} \cap T^{\prime}\right|$, we observe that $\bar{A}^{\prime} \cap B^{\prime}=\emptyset$ and $B^{\prime}=S^{\prime} \cap B^{\prime}=\{\tilde{w}\}$. Hence we know that $\tilde{w} \in V_{5}$ and $\tilde{w} z \in E(G)$. Since $N(z) \cap S^{\prime}=\{y, w\}$ and $y \notin V_{5}$, we see that $\tilde{w}=w$, which implies the desired conclusion that w is an admissible vertex for $\left(z, u ; A^{\prime}\right)$.

If $w \notin V_{5}^{(2)}$, then $w \in(N(y) \cap S-\{x\}) \cap\left(V_{5}-V_{5}^{(2)}\right)$ and we are done. Hence assume $w \in V_{5}^{(2)}$.

Claim 8.3 If $N(w) \cap \bar{A} \cap V_{5}=\emptyset$, then $|\bar{A}| \geq 3$.
Proof. Assume $N(w) \cap \bar{A} \cap V_{5}=\emptyset$. Since $\bar{A} \cap B=\emptyset, \quad \bar{A} \cap T=\{v\}$ and $|\bar{A}| \geq 2$, we observe $\bar{A} \cap \bar{B} \neq \emptyset$, which implies $\bar{A} \cap \bar{B}$ is a fragment of G since $|(S \cap \bar{B}) \cup(S \cap T) \cup(\bar{A} \cap T)|=5$. Hence $N(w) \cap(\bar{A} \cap \bar{B}) \neq \emptyset$, say $v^{\prime} \in N(w) \cap(\bar{A} \cap \bar{B})$. Then, since $N(w) \cap \bar{A} \cap V_{5}=\emptyset$, we see that $\quad v^{\prime} \notin V_{5}$, which implies $\quad|\bar{A} \cap \bar{B}| \geq 2$. This implies the desired conclusion $|\bar{A}|=|\bar{A} \cap T|+|\bar{A} \cap \bar{B}| \geq 3$.

Claim 8.4 $N(w) \cap A \cap V_{5}=\emptyset$.
Proof. Assume $N(w) \cap A \cap V_{5} \neq \emptyset$. Then, since $z \in N(w) \cap V_{5}$ and $w \in V_{5}^{(2)}$, we see that $N(w) \cap \bar{A} \cap V_{5}=\emptyset$. Hence Claim 8.3 assures us that $|\bar{A}| \geq 3$. Since $|\bar{A}|,|A| \geq 3$ and $N(w) \cap \bar{A} \cap V_{5}=\emptyset$, applying Corollary 7 , we see that there is an admissible vertex for $(w ; \bar{A})$. Since $z \in N(w) \cap V_{5}, \quad N(w) \cap A \cap V_{5} \neq \emptyset$ and $w \in V_{5}^{(2)}$, we observe that $N(w) \cap S \cap V_{5}=\{z\}$. Since $|N(z) \cap \bar{A}|=1, z$ is not an admissible vertex for $(w ; \bar{A})$, which implies that there is no admissible vertex for $(w ; \bar{A})$. This contradicts the previous assertion and this contradiction proves Claim 8.4.

Claim $8.5\left|A^{\prime}\right| \geq 3$.
Proof. Since $A^{\prime} \cap B=\emptyset, A^{\prime} \cap T=\{u\}$ and $\left|A^{\prime}\right| \geq 2$, we observe that $A^{\prime} \cap \bar{B} \neq \emptyset$, which implies that $A^{\prime} \cap \bar{B}$ is a fragment of G since $|(S \cap \bar{B}) \cup(S \cap T) \cup(A \cap T)|=5$, which implies $\left|A^{\prime} \cap \bar{B}\right| \geq 2$. This implies the desired conclusion that $\left|A^{\prime}\right|=\left|A^{\prime} \cap T\right|+\left|A^{\prime} \cap \bar{B}\right| \geq 3$.

We proceed with the proof of Lemma 8 (2).
Since $\left|\bar{A}^{\prime}\right|,\left|A^{\prime}\right| \geq 3$ and $N(w) \cap A^{\prime} \cap V_{5}=\emptyset$, applying Corollary 7, we see that there is an admissible vertex \tilde{w} for $\left(w ; A^{\prime}\right)$. Since $\left|N(z) \cap A^{\prime}\right|=1, z$ is not an admissible vertex for $\left(w ; A^{\prime}\right)$, which implies $\tilde{w} \neq z$. Then, since $w \in V_{5}^{(2)}$, we observe that $N(w) \cap V_{5}=\{z, \tilde{w}\}$, which implies that $N(w) \cap \bar{A}^{\prime} \cap V_{5}=\emptyset$. Since $\bar{A}=\bar{A}^{\prime}-\{x\}, N(w) \cap \bar{A}^{\prime} \cap V_{5}=\emptyset$ implies $N(w) \cap \bar{A} \cap V_{5}=\emptyset$. Now we have $N(w) \cap \bar{A} \cap V_{5}=\emptyset$ and Claim 8.3 assures us that $|\bar{A}| \geq 3$. Since $|\bar{A}|,|A| \geq 3,|N(w) \cap \bar{A}|=1$
and $N(w) \cap \bar{A} \cap V_{5}=\emptyset$, applying (1), we see that there is a strongly admissible vertex for $(w ; \bar{A})$. However, since $N(w) \cap S \cap V_{5}=\{z, \tilde{w}\},|N(z) \cap A| \geq 2$ and $|N(\tilde{w}) \cap A| \geq 2$, we see that there is no strongly admissible vertex for $(w ; \bar{A})$, which violates the previous assertion. This contradiction proves (2) and the proof of Lemma 8 is completed.

4 The proof of Theorem 1

In this section we give a proof of Theorem 1 .
Let G be a 5 -connected graph. Let A be a fragment of G and let $S=N(A)$. Let $A d(Y ; A)$ denote the set of admissible vertices for $(Y ; A)$. We demote \hat{S}_{A} the set of vertices y of S such that $A d(y ; A) \neq \emptyset$ and let $\tilde{S}_{A}=\cup_{y \in \hat{S}_{A}} A d(y ; A)$. Using these notation, we can rewrite Theorem 1 as the following.

Theorem 1 Let G be a contraction-critically 5-connected graph. Let A be a connected fragment of G with $|A|=2$, say $A=\left\{x_{1}, x_{2}\right\}$ and let $S=N(A)$.
(1) If $A \cap V_{6} \neq \emptyset$, then $\left|\hat{S}_{A}\right| \geq 4$.
(2) If $A \cap V_{6} \neq \emptyset,\left|\tilde{S}_{A}\right| \geq 3$.
(3) If $A \cap V_{6}=\emptyset$, then $\hat{S}_{A} \cap\left(S-N\left(x_{1}\right) \cap N\left(x_{2}\right)\right) \neq \emptyset$.

We prove Theorem 1 using the notation \hat{S}_{A} and \tilde{S}_{A}. Let $S=\left\{y_{1}, y_{2}, y_{3}, y_{4}, y_{5}\right\}$. Without loss of generality we may assume that $\operatorname{deg}_{G}\left(x_{1}\right) \geq \operatorname{deg}_{G}\left(x_{2}\right)$. Hence, if $A \cap V_{6} \neq \emptyset$, then $x_{1} \in V_{6}$ and $S \subseteq N\left(x_{1}\right)$.
(1) Assume $A \cap V_{6} \neq \emptyset$ and $\left|\hat{S}_{A}\right| \leq 3$. Then $\left|S-\hat{S}_{A}\right| \geq 2$, say $y_{1}, y_{2} \in S-\hat{S}_{A}$.

We show that there is a fragment B_{i} such that $\left\{x_{1}, x_{2}, y_{i}\right\} \subseteq N\left(B_{i}\right)$ for $i=1,2$. Let $i \in\{1,2\}$. If $x_{2} y_{i} \in E(G)$, then let B_{i} be a fragment with respect to $x_{2} y_{i}$. Then, since $S \subseteq N\left(x_{1}\right)$, we observe that $\left\{x_{1}, x_{2}, y_{i}\right\} \subseteq N\left(B_{i}\right)$. If $x_{2} y_{i} \notin E(G)$, then let B_{i} be a fragment with respect to $x_{1} y_{i}$. Then, since $S-\left\{y_{i}\right\} \subseteq N\left(x_{2}\right)$, we again observe that $\left\{x_{1}, x_{2}, y_{i}\right\} \subseteq N\left(B_{i}\right)$. Now the existence of a fragment B_{i} such that $\left\{x_{1}, x_{2}, y_{i}\right\} \subseteq N\left(B_{i}\right)$ is shown.

Let B_{i} be a fragment such that $\left\{x_{1}, x_{2}, y_{i}\right\} \subseteq N\left(B_{i}\right)$ and let $T_{i}=N\left(B_{i}\right)$ for $i=1,2$. We show that $\left|S \cap B_{1}\right| \geq 2$. Suppose $\left|S \cap B_{1}\right| \leq 1$. Then, since $\left|S \cap B_{1}\right|<\left|A \cap T_{1}\right|$, Lemma 2 (2) assures us that $\bar{A} \cap B_{1}=\emptyset$, which implies $B_{1}=S \cap B_{1}$, say $B_{1}=S \cap B_{1}=\{y\}$. Then we observe $y \in V_{5}$ and $\left\{y_{1}\right\} \cup A \subseteq N(y)$, which implies that y is an admissible vertex for $\left(y_{1} ; A\right)$. This contradicts the fact that $y_{1} \in S-\hat{S}_{A}$ and it is shown that $\left|S \cap B_{1}\right| \geq 2$.

By the similar arguments, we can show that $\left|S \cap \bar{B}_{1}\right|,\left|S \cap B_{2}\right|,\left|S \cap \bar{B}_{2}\right| \geq 2$. Thus we have
$\left|S \cap B_{i}\right|=\left|S \cap \bar{B}_{i}\right|=2$ for $\quad i=1,2$. Without loss of generality we may assume that $S \cap B_{1}=\left\{y_{2}, y_{3}\right\}$ and $S \cap \bar{B}_{1}=\left\{y_{4}, y_{5}\right\}$. Say $S \cap B_{2}=\left\{y_{1}, y_{j}\right\}$ and $S \cap \bar{B}_{2}=\left\{y_{3}, y_{4}, y_{5}\right\}-\left\{y_{j}\right\}$. Then we observe that $y_{1} \in T_{1} \cap B_{2}$ and $y_{2} \in T_{2} \cap B_{1}$.

We show $j \neq 3$. Suppose $j=3$. Then $y_{3} \in B_{1} \cap B_{2}$ and $y_{4}, y_{5} \in \bar{B}_{1} \cap \bar{B}_{2}$. Since neither $B_{1} \cap B_{2}$ nor $\bar{B}_{1} \cap \bar{B}_{2}$ is empty, we see that $B_{1} \cap B_{2}$ is a fragment of G. Since $\left\{x_{1}, x_{2}\right\} \subseteq$ $N\left(B_{1} \cap B_{2}\right)$ and $N\left(\left\{x_{1}, x_{2}\right\}\right) \cap\left(B_{1} \cap B_{2}\right)=\left\{y_{3}\right\}$, applying Lemma 1 with the roles of A and S replaced by $B_{1} \cap B_{2}$ and $\left\{x_{1}, x_{2}\right\}$, respectively, we see that $B_{1} \cap B_{2}=\left\{y_{3}\right\}$, which implies $y_{3} \in V_{5}$ and $\left\{y_{1}\right\} \cup A \subseteq N\left(y_{3}\right)$. Hence $y_{3} \in A d\left(y_{1} ; A\right)$, which contradicts the choice of y_{1}. This contradiction shows $j \neq 3$, say $j=4$.

In this situation, we observe that $y_{3} \in B_{1} \cap \bar{B}_{2}, y_{4} \in \bar{B}_{1} \cap B_{2}$ and $y_{5} \in \bar{B}_{1} \cap \bar{B}_{2}$. Since neither $\bar{B}_{1} \cap B_{2}$ nor $B_{1} \cap \bar{B}_{2}$ is empty, we see that $\bar{B}_{1} \cap B_{2}$ is a fragment of G. Since $\left\{x_{1}, x_{2}\right\} \subseteq N\left(\bar{B}_{1} \cap B_{2}\right)$ and $N\left(\left\{x_{1}, x_{2}\right\}\right) \cap\left(\bar{B}_{1} \cap B_{2}\right)=\left\{y_{4}\right\}$, applying Lemma 1 with the roles of A and S replaced by $\bar{B}_{1} \cap B_{2}$ and $\left\{x_{1}, x_{2}\right\}$, respectively, we see that $\bar{B}_{1} \cap B_{2}=\left\{y_{4}\right\}$, which implies $y_{4} \in V_{5}$ and $\left\{y_{1}\right\} \cup A \subseteq N\left(y_{4}\right)$. Hence $y_{4} \in A d\left(y_{1} ; A\right)$, which again contradicts the choice of y_{1}. This contradiction shows that $\left|\hat{S}_{A}\right| \geq 4$ and (1) is proved.
(2) Assume $A \cap V_{6} \neq \emptyset$ and $\left|\tilde{S}_{A}\right| \leq 2$. Since $\hat{S}_{A} \neq \emptyset \geq 4$, we see that $\tilde{S}_{A} \neq \emptyset$, say $y \in \tilde{S}_{A}$. Since $y \in V_{5}, \quad A \subseteq N(y)$ and $N(y) \cap \bar{A} \neq \emptyset$, we see that $|N(y) \cap S| \leq 2$. Since $\left|\hat{S}_{A}\right| \geq 4$ and $|N(y) \cap S| \leq 2$ for $y \in \tilde{S}_{A}$, we see that $\left|\tilde{S}_{A}\right|=2$, say $\tilde{S}_{A}=\left\{y_{1}, y_{2}\right\}$. Since $\left|\hat{S}_{A}\right| \geq 4$, we see that either $y_{1} \in \hat{S}_{A}$ or $y_{2} \in \hat{S}_{A}$, which implies $y_{1} y_{2} \in E(G)$ and $\left\{y_{1}, y_{2}\right\} \subseteq \hat{S}_{A}$. Since $|N(y) \cap S| \leq 2$ for $y \in \tilde{S}_{A}$ and $y_{1} y_{2} \in E(G)$, we see that $\left|N\left(\tilde{S}_{A}\right) \cap S\right| \leq 2$, which implies $\left|\hat{S}_{A}\right| \leq 4$ and $S-\hat{S}_{A} \neq \emptyset$, say $y_{j} \in S-\hat{S}_{A}$.

By the same arguments in the proof of (1), we see there is a fragment B with $\left\{x_{1}, x_{2}, y_{j}\right\} \subseteq N(B)$ and we also have $|S \cap B|=|S \cap \bar{B}|=2$. Let $T=N(B)$. Since $y_{1} y_{2} \in E(G)$, we may assume that $S \cap B=\left\{y_{1}, y_{2}\right\}$. Since $E_{G}(S \cap B, S \cap \bar{B})=\emptyset$ and $S \cap B=\tilde{S}_{A}$, we see that $N\left(\tilde{S}_{A}\right) \cap(S \cap \bar{B})=\emptyset$, which implies $\hat{S}_{A} \cap(S \cap \bar{B})=\emptyset$ and $\left|\hat{S}_{A}\right|=\left|\tilde{S}_{A}\right|=2$. This contradicts (1) and this contradiction shows $\left|\tilde{S}_{A}\right| \geq 3$. Now (2) is proved.
(3) Assume $\hat{S}_{A} \cap\left(S-N\left(x_{1}\right) \cap N\left(x_{2}\right)\right)=\emptyset$. Since $|A|=2$ and $A \cap V_{6}=\emptyset$, we observe that $A \subseteq V_{5}$, which implies $\left|N\left(x_{1}\right) \cap N\left(x_{2}\right)\right|=3$, say $\quad N\left(x_{1}\right) \cap N\left(x_{2}\right)=\left\{y_{3}, y_{4}, y_{5}\right\}$ and $N\left(x_{i}\right)-$ $\left\{x_{3-i}, y_{3}, y_{4}, y_{5}\right\}=\left\{y_{i}\right\}$ for $i=1,2$. Then $S-N\left(x_{1}\right) \cap N\left(x_{2}\right)=\left\{y_{1}, y_{2}\right\}$ and by the assumption, we observe that $\hat{S}_{A} \cap\left\{y_{1}, y_{2}\right\}=\emptyset$. Since $\hat{S}_{A} \cap\left\{y_{1}, y_{2}\right\}=\emptyset$, we observe that $A d\left(y_{i} ; A\right)=\emptyset$ for $i=1,2$. Let B_{i} be a fragment with respect to $x_{i} y_{i}$ and let $T_{i}=N\left(B_{i}\right)$ for $i=1,2$.

We show that $x_{2} \in T_{1}$. Suppose $x_{2} \notin T_{1}$, say $x_{2} \in \bar{B}_{1}$. Then since $N\left(x_{2}\right)=A \cup S-\left\{x_{2}, y_{1}\right\}$, we observe that $A \cup S \subseteq \bar{B}_{1} \cup T_{1}$, which implies $N\left(x_{1}\right) \cap B_{1}=\emptyset$. This contradicts the choice of B_{1} and it is shown that $x_{2} \in T_{1}$.

Similarly we have $x_{1} \in T_{2}$. Now we know that $\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\} \subseteq T_{1} \cup T_{2}$. Since $\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\} \subseteq T_{1} \cup T_{2}$ and neither $N\left(x_{1}\right) \cap B_{1}$ nor $N\left(x_{1}\right) \cap \bar{B}_{1}$ is empty, we see neither $B_{1} \cap\left\{y_{3}, y_{4}, y_{5}\right\}$ nor $\bar{B}_{1} \cap\left\{y_{3}, y_{4}, y_{5}\right\}$ is empty, which implies either $\left|B_{1} \cap\left\{y_{3}, y_{4}, y_{5}\right\}\right|=1$ or $\left|\bar{B}_{1} \cap\left\{y_{3}, y_{4}, y_{5}\right\}\right|=1$, say $\left|B_{1} \cap\left\{y_{3}, y_{4}, y_{5}\right\}\right|=1$ and let $B_{1} \cap\left\{y_{3}, y_{4}, y_{5}\right\}=\left\{y_{3}\right\}$.

We show that $y_{2} \in B_{1}$. Suppose $y_{2} \notin B_{1}$. Then, since $N\left(\left\{x_{1}, x_{2}\right\}\right) \cap B_{1}=\left\{y_{3}\right\}$, applying Lemma 1 with the roles of A and S replaced by B_{1} and $\left\{x_{1}, x_{2}\right\}$, respectively, we see that $B_{1}=\left\{y_{3}\right\}$, which implies $y_{3} \in V_{5}$ and $\left\{y_{1}\right\} \cup A \subseteq N\left(y_{3}\right)$. Hence we have $y_{3} \in A d\left(y_{1} ; B_{1}\right)$, which contradicts the assumption that $\hat{S}_{A} \cap\left\{y_{1}, y_{2}\right\}=\emptyset$. This contradiction shows that $y_{2} \in B_{1}$.

We show that $\left\{y_{4}, y_{5}\right\} \subseteq \bar{B}_{1}$. Suppose $y_{5} \notin \bar{B}_{1}$. Then, since $N\left(\left\{x_{1}, x_{2}\right\}\right) \cap \bar{B}_{1}=\left\{y_{4}\right\}$, applying Lemma 1 with the roles of A and S replaced by \bar{B}_{1} and $\left\{x_{1}, x_{2}\right\}$, respectively, we see that $\bar{B}_{1}=\left\{y_{4}\right\}$, which implies $y_{4} \in A d\left(y_{1} ; A\right)$. This contradicts the assumption that $\hat{S}_{A} \cap\left\{y_{1}, y_{2}\right\}=\emptyset$ and it is shown that $y_{5} \in \bar{B}_{1}$.

By symmetry we have $y_{4} \in \bar{B}_{1}$. By the similar argument, we know that there is an integer $j \in\{3,4,5\}$ such that $\left\{y_{1}, y_{j}\right\} \subseteq B_{2}$ and $\left\{y_{3}, y_{4}, y_{5}\right\}-\left\{y_{j}\right\} \subseteq \bar{B}_{2}$. In this situation we observe that $y_{1} \in T_{1} \cap B_{2}$ and $y_{2} \in T_{2} \cap B_{1}$.

We show $j \neq 3$. Suppose $j=3$. Then $y_{3} \in B_{1} \cap B_{2}$ and $y_{4}, y_{5} \in \bar{B}_{1} \cap \bar{B}_{2}$. Since neither $B_{1} \cap B_{2}$ nor $\bar{B}_{1} \cap \bar{B}_{2}$ is empty, Lemma 2 (1) assures us that $B_{1} \cap B_{2}$ is a fragment of G. Since $\left\{x_{1}, x_{2}\right\} \subseteq N\left(B_{1} \cap B_{2}\right)$ and $N\left(\left\{x_{1}, x_{2}\right\}\right) \cap\left(B_{1} \cap B_{2}\right)=\left\{y_{3}\right\}$, applying Lemma 1, with the roles of A and S replaced by $B_{1} \cap B_{2}$ and $\left\{x_{1}, x_{2}\right\}$, respectively, we see that $B_{1} \cap B_{2}=\left\{y_{3}\right\}$, which implies $y_{3} \in V_{5}$ and $\left\{y_{1}\right\} \cup A \subseteq N\left(y_{3}\right)$. Hence $y_{3} \in A d\left(y_{1} ; A\right)$, which contradicts the assumption that $\hat{S}_{A} \cap\left\{y_{1}, y_{2}\right\}=\emptyset$ and it is shown that $j \neq 3$, say $j=4$.

Then $y_{3} \in B_{1} \cap \bar{B}_{2}, y_{4} \in \bar{B}_{1} \cap B_{2}$ and $y_{5} \in \bar{B}_{1} \cap \bar{B}_{2}$. Since neither $\bar{B}_{1} \cap B_{2}$ nor $B_{1} \cap \bar{B}_{2}$ is empty, we see that $\bar{B}_{1} \cap B_{2}$ is a fragment of G. Since $\left\{x_{1}, x_{2}\right\} \subseteq N\left(\bar{B}_{1} \cap B_{2}\right)$ and $N\left(\left\{x_{1}, x_{2}\right\}\right)$ $\cap\left(\bar{B}_{1} \cap B_{2}\right)=\left\{y_{4}\right\}$, applying Lemma 1 with the roles of A and S replaced by $\bar{B}_{1} \cap B_{2}$ and $\left\{x_{1}, x_{2}\right\}$, respectively, we see that $\bar{B}_{1} \cap B_{2}=\left\{y_{4}\right\}$, which implies $y_{4} \in V_{5}$ and $\left\{y_{1}\right\} \cup A \subseteq N\left(y_{4}\right)$. Hence $y_{4} \in A d\left(y_{1} ; A\right)$, which contradicts the assumption that $\hat{S}_{A} \cap\left\{y_{1}, y_{2}\right\}=\emptyset$. This contradiction shows that $\hat{S}_{A} \cap\left(S-N\left(x_{1}\right) \cap N\left(x_{2}\right)\right) \neq \emptyset$. Now (3) is proved and the proof of Theorem 1 is completed.

Acknowledgements\}

The author would like to thank Professor Yoshimi Egawa and Mr. Wei Tang for their detailed and valuable comments.

References

[1] K. Ando, A local structure theorem on 5-connected graphs, J. Graph Theory $\mathbf{6 0}$ (2009), 99-129.
[2] K. Ando, Y. Egawa, and M. Kriesell The average degree of minimally contraction-critically 5 -connected graphs, J. Graph Theory 75 (2014), no. 4, 331-354.
[3] K. Ando and T. Iwase, The number of vertices of degree 5 in a contraction-critically 5-connected graph, Discrete Math. 311 (2011), 1925-1939.
[4] K. Ando, A. Kaneko and K. Kawarabayashi, Vertices of degree 5 in a contraction critically 5-connected graphs, Graphs Combin. 21 (2005), 27-37.
[5] K. Ando, A. Kaneko, K. Kawarabayashi and K. Yoshimoto, Contractible edges and bowties in a k-connected graph, Ars Combin. 64 (2002), 239-247.
[6] K. Ando and K. Kawarabayashi, Some forbidden subgraph conditions for a graph to have a k-contractible edge, Discrete Math. 267 (2003), 3-11.
[7] Y. Egawa, Contractible edges in n-connected graphs with minimum degree greater that or equal to [$\frac{5 n}{2}$], Graphs Combin. 7 (1991), 15-21.
[8] M. Fontet, Graphes 4-essentiels, C. R. Acad. Sci. Paris 287 (1978), 289-290.
[9] M. Kriesell, A survey on contractible edges in graphs of a prescribed vertex connectivity, Graphs Combin. 18 (2002), 1-30.
[10] N. Martinov, Uncontractible 4-connected graphs, J. Graph Theory 6 (1982), 343-344.
[11] J. Su, Vertices of degree 5 in contraction critical 5-connected graphs, J. Guangxi Norm. Univ. 3 (1997), 12-16 (in Chinese).
[12] C. Thomassen, Non-separating cycles in k-connected graphs, J. Graph Theory 5 (1981), 351-354.
[13] W. T. Tutte, A theory of 3-connected graphs, Indag. Math. 23 (1961), 441--455.

