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Some Models in Stochastic Processes
Dedicated to Professor Hideo Ōsawa

Makoto Doi* 

abstract

* 

In this paper we review the four models in Stochastic Processes. First one described by 
integro-partial differential equation or integro-differential equation is found in the process which 

has two phases, the “inflow” and the “outflow”, and the switchover of which is controlled by some 

storage level. Second we find it as renewal equation in the same process. We deal with the third one 

in the Ruin Process using recursive equation. Fourth one is the Queue with Arrival Acceptance 

Window.

1　Storage process

First of all we investigate the storage process with upper boundary which has two phases, 

called as the inflow and outflow phases, and the switch over of these phases is controlled by a certain 

storage level. 

In the inflow phase the storage is increasing and in the outflow phase the storage is 

decreasing. Assume that the storage increases or decreases at each rate dependent on the present 

phase and level and that the inflow has two different increasing rates. In both phases the large scale 

demand for the  system may occur according to the Poisson process. We present the analytical 

solution for the steady-state probabilities of storage levels and the ruin probability incurred the first 

epoch at which the storage level drops down below the zero level. 

For this process Doi and Ōsawa［1］have studied numerically on the steady-state　

probabilities of storage levels and Doi［2, 5］has got the mean ruin time. For the simple process 

with increasing rate, Doi［3, 6］ has studied on the mean ruin time and Doi, Nagai and Ōsawa［4］ 

have got the ruin probability.

Let be the storage level at time t. Assume that it has boundaries L and zero, that is,  

. We define a time interval in which is increasing as an inflow phase, and during this  
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phase  has inflow rates  given that  for   and  given that  

for . We also refer to a time interval in which  is decreasing as an outflow phase having 

a rate  （ ）. Once  reaches the upper bound , it remains at the level in a certain 

period whose length is exponentially distributed with parameter . Immediately after this period, 

the phase changes to the outflow one and  is controlled according to the outflow rate  given 

that  for . 

Throughout these phases, the large scale demand for the system may occur according to the 

Poisson process, that is, the inter-occurrence time has an exponential distribution with parameter . 

Let the amount of each demand has a distribution function  with the density function  

having the finite mean.

There are two cases for the switch over from the outflow phase to the inflow one. First, if  

decreases to the level l continuously, the phase instantaneously changes  to the inflow one with rate 

. Second, if  drops down into a domain  because of a large scale demand for the 

system, the phase instantaneously changes to the inflow one with rate  . In two cases stated 

above the system can be switched without any loss of time. When the demand larger than the 

present level occurs, the storage becomes empty and the system is ruined.  If a large scale demand 

happens in the inflow phase, the inflow phase is continued without the case of large scale demand 

dropping down below the zero level. Once the ruin occurs,  remains at level zero in a certain 

period according to an exponential distribution with parameter . Immediately after that period, 

the inflow phase begins.

For this process, in the next section, we define the ruin probability and we constitute the 

integro-differential equations.  

1.1　Integro-partial differential equations

For the model above, the states of the storage process are classified into four categories:

( ξ (t), X(t)) = (1, x)	� if the process is in inflow phase and the storage level is 
x at time t, ,

( ξ (t), X(t)) = (0, x)	� if the process is in outflow phase and the storage level is 
x at time t, .

( ξ (t), X(t)) = 0	 if the storage process is ruined at time t,

( ξ (t), X(t)) = L 	� if the storage is full at time t, 

where indicates the present phase.

Thus we constitute the Markov process .

Now, we define its probability distribution for  and  :

*
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	 ( , ) [( ( ), ( )) ( , )]tp i x P t X t i xξ= = ,
	 ξ= =(0) [( ( ), ( )) 0]tP P t X t ,

	 ξ= =( ) [( ( ), ( )) ]tP L P t X t L .

Hence we have the following integro-partial differential equations with respect to .
For < < (1, ) (0 )tp x x L

　 α λ
−∂ ∂

+ = − − +
∂ ∂ ∫1 0

(1, ) (1, )
( ) { (1, ) (1, ) ( )}

L x
t t

t t

p x p x
t p x p x y dF y

t x
 

(0, ) 0
 ( ){ ( ) ( ) (0, ) ( )}

L x

l t tI x P L f L x p x y dF yλ
−

+ − + +∫ ,� (1) 

and fo  r < <   (0, ) ( )tp x l x L

　  dF y }0 0

(0, ) (0, )
 ( ) { (0, ) ( ) ( ) (0, ) ( )

L x
t t

t t t

p x p x
x p x P L f L x p x y

t x
α λ

−∂ ∂
− = − − − − +

∂ ∂ ∫ � (2)

where  if  0, ( ) 1  (0, ); 0 lI x x l= ∈ = otherwise.

For the process with steady state we impose the condition on the process in the next 

subsection.

1.2　Integro-differential equation

Assuming that ,  and exist, we 

consider the steady state of this process.

Hence we have the following integro-differential equations from (1) and (2).
For < <  (1, ) (0 )p x x L

　 α λ
−

= − − +∫1 0

(1, )
 ( ) { (1, ) (1, ) ( )}

L xdp x
t p x p x y dF y

dx

(0, ) 0
{ ( ){ ( ) (0, ) ( )}}

L x

l LI x P f L x p x y dF yλ
−

+ ⋅ − + +∫ ,� (3)
and for < <   (0, ) ( )p x l x L

　 0 0

(0, )
 ( ) { (0, ) ( ) (0, ) ( )}

L x

L

dp x
x p x P f L x p x y dF y

dx
α λ

−
− = − − ⋅ − − +∫ � (4)

To solve these equations, we need the boundary conditions:

　ν λ λ= + − + −∫0 0 0
 { (0, ) (1, )}{1 ( )} {1 ( )},

L

LP p y p y F y dy P F L � (5)

　 ν λ α+ = − −1 ( ) ( ) (1, ),L LP L p L � (6)

　ν α= − −0 ( ) (0, ),L LP L p L � (7)

　
0

 (0, ) (1, ) { (0, ) (1, )} ( ) ( ).
L l

Lp l p l p l u p l u f u du P f L l
−

+ + − = + + + + ⋅ −∫ � (8)
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　Note that we suppose  for .

1.3　Analytical Solutions for the storage process}

In this sub-section we present the analytical solutions for (3) and (4). First we have the 

following Theorem concerning with  in the outflow phase.

Theorem 1  If we take  for  then  is obtained as follows:

　　 δ−
= + +∫ 0

00
 (0, ) ( ) ( ) ( )

L x yp x B x e B x y dM y � (9)
where 

　　
λ
α

−
= − + −∫0 00

0

 ( ) ( ) ( ){1 ( )} ,
L x

B x A x A x y F y dy � (10)

　　
λ
α

= − + ⋅ −0
0

 ( ) (0, ) ( ),LA x p L P F L x � (11)

　　 δλ
α

∞
−

=

= = −∑ ∫ 02 *
0 0 0 0

1 0

 ( ) ( ), ( ) {1 ( )}
y yn

n

M y H y H y e F y dy � (12)

and is the unique solution of the equation

　　 δλ
α

∞ − − =∫ 0

0
0

 {1 ( )} 1.xe F x dx � (13)

（  is the 2n-th fold convolution of .）
Next we have the following Theorem concerning with  in the inflow phase.

Theorem 2  If we take for then is obtained as follows:

　　 δ−
= − + ∫ 1

10
 (1, ) (1, ){1 ( )}

L x yp x p L e dM y ,� (14)
where

　　 δλ
α

∞
−

=

= = −∑ ∫ 1*
1 1 1 0

1 1

 ( ) ( ), ( ) {1 ( )}
y yn

n

M y H y H y e F y dy � (15)

and is the unique solution of the equation

　　 δλ
α

∞ − − =∫ 1

0
1

 {1 ( )} 1.xe F x dx � (16)

Next we have for .

Theorem 3  If we take  for  then  is obtained as follows:

　　 2
1 1 20

 (1, ) ( ) ( ) ( ),
L x yp x A x e A x y dM yδ−

= + +∫ � (17)
where

　　
λ
α

= − − − − −1
2

 ( ) (1, ) { ( ) ( )}LA x p l P F L l F L x
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λ
α

− + −∫ ∫
2

 { (0, ) (1, )} ( )
l L

x l
p u p u f u v dudv ,� (18)

　　 δλ
α

∞
−

=

= = −∑ ∫ 2*
2 2 2 0

1 2

 ( ) ( ), ( ) {1 ( )}
y yn

n

M y H y H y e F y dy � (19)

and is the unique solution of the equation

　　 δλ
α

∞ − − =∫ 2

0
2

 {1 ( )} 1.xe F x dx � (20)

To get the ruin probability, we need to obtain the probability  by the following relation.

　　 + + + =∫ 00
 { (0, ) (1, )} 1,

L

Lp x p x dx P P � (21)

where is expressed by  using the boundary condition.

Finally we have the ruin probability by (5). In order to express  in (18) by , we 
use (8) and (9). Thus we have

　　
−

− = + + + + ⋅ −∫0 (1, ) { (0, ) (1, )} ( ) ( )
L l

Lp l p l u p l u dF u P f L l � (22)

　　　　　　� 0 0
( )

0 0 0 0 0 00 0 0 0
0 0

( ) ( ){1 ( )} ( ) ( ) ( ){1 ( )} ( )
L l L l L l L l yy yA l A l y F y dy e A l y dM y e A l u F u dM yδ δλ λ

α α
− − − − + 

− + − + − + + − + − 
 

∫ ∫ ∫ ∫ 

0 0
( )

0 0 0 0 0 00 0 0 0
0 0

( ) ( ){1 ( )} ( ) ( ) ( ){1 ( )} ( )
L l L l L l L l yy yA l A l y F y dy e A l y dM y e A l u F u dM yδ δλ λ

α α
− − − − + 

− + − + − + + − + − 
 

∫ ∫ ∫ ∫ .

Since the all probabilities are expressed by , we have the following theorem for the ruin 
probability.

Theorem 4  If we set

　　    * * * 0
0

(0, ) (1, )
 (0, ) , (1, )  ,

L L L

Pp x p x
p x p x and P

P P P
= = =

then the ruin probability is obtained as

　　
λ
ν

 = + − + −  ∫ * *
0 ( , )0

0

 { ( ) (0, ) (1, )}{1 ( )} 1 ( ) ,
L

L
l L

P
P I y p y p y F y dy F L � (23)

where

　　
−

 = + + +  ∫
1

* * *
00

 { (0, ) (1, )} 1 .
L

LP p x p x dx P � (24)

1.4　The case of exponential demands

We suppose the large scale demand occurs according to the Poisson distribution with 

parameter  and its amount has the Exponential distribution with parameter .

In this case the quantities  and  are given by
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λ
α

= = ( ) ( 1,2),i
i

dM x dx i � (25)

　　 0 0 0
0

0

 ( ) .
2

x x x

dM x e e e dx
λ λ λ
α α αλ

α

− − 
 
 
 

= − � (26)

Furthermore are obtained from (13), (16) and (20), respectively.

　　   ( 0,1,2).i
i

i
λδ µ
α

= − =

By Theorem 1 and (7), we have  for the outflow phase as follows:

　　 ( )

00 0 0

 (0, ) 1 ( ) ( ) ( ),L xLL
LL L

P ep x P F L x P L x Q xµνν λ λ
αα α α µ

− −   −= + + − + − +   
  

� (27)

where

　　 ( )0 ( )

0 0 0 0

1
 ( ) 1 1

2
L xLQ x eδ

ν λ
α α δ δ

−
   = − −  

  

　　　　

( )

0

0

( )( )
0 0

0 0 0 0 0

( )
2
0 0 0

1
 1 1 ( )  

2( ) 2

1
 1

2

L x

L x

e L x

e

λ µ
α

δ

α αλ λ
λ α µ λ α µ α δ λ α µ

λ λ
α δ α µ

− + −

−

      + − − + + −     + + +      
 

+ − − 
 

　　　　 ( )0 0

( )( )
( ) ( )

0 0 0 0

1
 1

2 ( ) 2

L x
L x L xe e e

λ µ
α δ µλ λλ

α λ α µ α µ α

− + −
− − −

  
 + − − − −  +   

　　　　  0 0 0

( )( ) ( )( )
( )( )

2
0 0

1
 2

2 2

L x L x
L xL x

Le e e e P
λ λµ µ
α δ αµλ

α α

− + − − + −
−− −

   
   − − + + −

      

　　　　 0 0

( )
( )( ) 0 ( ) .

2

L x
L xL xL x e e e

λ
δ αµ α

λ

− −
−− −

 
 − − − −
 
 

� (28)

Next, by Theorem 2 and (6), we have for the inflow phase .

　　 1 ( )

1 1 1 11

1 (1, ) L xL
L

ep x Pδλ λν λ
α δ α δα

− + − +=  
 

� (29)

For , in (18) is obtained as follows:

　　 ( )( ) ( )
1

2

 ( ) (1, ) L x L l
LA x p l e e Pµ µλ

α
− − − −= − − −

　　　　 ( )
1

1 1

2 1 1 1 1

1
( ) 1

L l L
l x l LL

L

e
e e e e e e P

λ λδ
α αµ µ µ µν λλ λ

α α µ α δ δ

− −
− −

    +    − − − − + −         
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　　　　 ( )
0

1 1 1
( ) 1l l LL

Le L l e e Pµ µ µν
α µ µ µ

− − −   + − + − −  
   

　　　　 ( )
0 0

1
( )1 l L L

Le e e L l Pµ µ µλ λ
µα α µ

− − −  − − −+ +  
  

　　　　 µ µ− − − − + ∫21
( ) ( ) ,

2

LL u

l
e L l e Q u du

where

　　 ( )0 0 00

0 0

1
( )

2

l LL Lu l L

l
e Q u du e e e e e

λ λ
δ α αµ µ µαλ

α δ λ µ

− −
− − −

   = − − − 


 
 
    

∫

　　　　
0 0 0 0

1 1 1
1Lν λ

α δ α α µ
     ⋅ − + −    
     

　　　　 ( )0 0 0

( )
0

0

1
2( )

L L l
l Le e e e e

λ λ λµ
α α α µ µαλ

λ α µ λ µ

− +
− −

 
 
 
 

  + − − − +   

　　　　 0

0 0 0 0

1 1
1L αν λ

α λ α µ α α µ
     ⋅ − + −    +     

 

　　　　 ( )0
22

0 0 0

11
( )

2
l l LL L l e e eµ µ µαλν

µα δ λ α µ
− − −  − − −+ +  +   

　　　　
0

0 0

( )

0

1 ( )
2

L L l L l
Le

e e e L l
λ λµ δ
α α µλ

α

− − − −
−

 
 + + − + −
 
 

　　　　 0 0 0

( )
0

0

1
2

2

l L
L

Le e e P
λ λ µ
α δ αα

α λ

− − + 
 
 


  + − − 
  

　　　　 0 0

2 ( )
2 0

2
( ) 2 .

2 2

L L L l
Le

L l e e e
λ λµ
α αµα

λ

− − +
−− − − + −

 
 
 
 

� (30)

For the second term of the right hand side of (17) we have the following.

　　 δ δ µλ
α δ

− − −+ = − − +∫ ∫2 2 ( )
10

2 2

( ) ( 1) (1, ) ( )
l x Ly l x u

l
e A x y dy e p l e Q u du

　　　　　　　　　　　 µ ν ν λλ β β β
α α α

 +
− + +  

  
0 1

2 0 1

l L L
L Le P

　　　　　　　　　　　 δ µ µ ν ν λλ β β
α δ µ α α

+ −   +
+ − +  

+   
2

2
( )( )

0 12
2 2 0 1

( 1)
( )

l x x L Le e

　　　　　　　　　　　 ( ){ }( ) ( ) ,L x L l
LL Pe eµ µβ − − − −

+ − −


� (31)

where
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　　 ( )0

11 1
1( ) ,l l Le L l e e

µ µ µβ
µµ µ

− − −
 −= − + − 
 

　　 ( )
1

1 1
1

1 1 1

1 1 ,
L l L

l L
e

e ee e

λ λδ
α αµ µ

λ
β

α δµ δ

− −
− −

  −  = + −−      

　　 ( ) 2

00

1 11 ( ) ( ) .
2

L Ll L
L e L l e L le e

µ µµ µ
λλβ

α µ µα
− −− −

  + − −= − − −  
  

2　Renewal process

In the same process above we evaluate the right hand side of (4). First we note the following 

relation.

　　
0 0

(0, ) (0, ) ( ) (0, ){1 ( )}
L x L xd

p x p x y f y dy p x y F y dy
dx

− −
− + + = + −∫ ∫  (32)

Using this relation we rewrite (4) as:

　　
λ
α

−
= − + −∫0 0

0

(0, ) ( ) (0, ){1 ( )}
L x

p x A x p x y F y dy . (33)

Since it is not the proper renewal function, we need the Tijms' method.

Using δ0 defined by (13), we define the distribution function:

　　
 

 

0

0
00

{1 ( )} ( 0),
( )

0 ( 0).

x xe F y dy x
H x

x

δλ
α

− − >
=

≤







∫  (34)

2.1　Stabdard renewal equation

Now we have the following standard renewal equation in Theorem1, Theorem 2 and Theorem 3.

　　

 

1* ( 1)*

1

0

( ) ( ) ( )

( ) ( ) ( ) ( 1,2),

n
i i i

n

i i i

M y H y H y

H y M y x dH x i

¥
+

=
¥

= +

= + - =

å

ò
and

　　 2* (2 2)*
0 0 0

1

( ) ( ) ( )n

n

M y H y H y
¥

+

=

= +å

　　　　　 2*
0 0 0

0
( ) ( ) ( ).H y M y x dH x

¥
= + -ò
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It goes without saying that it is desirable to evaluate the convolution directly. If  is 

assumed to be the exponential distribution, we can evaluate the convolution easily.

First, using , we have 

　　 ( ) 1 .i

x

iH x e



-

= -

And it is easily to get  as follows:

　　 *

1

( ) ( )k
i i

k

M x H x
¥

=

=å

　　　　　 ( 1)*

0
1

( ) i

ux
k

i
k i

H x u e du





¥ -
-

=

= -åò

　　　　　
0

{ ( ) 1} .i

ux

i
i

M x u e du





-

= - +ò

Let us denote  by  Laplace Transform of . Then we have

　　 2

1
( ) .i

i

m s
s




= ×

By use of Inverse Transform, we have the following Proposition.

Proposition 1

　　  ( ) ( 1,2).i
i

M x x i= =



For , we need to evaluate  as follows:

　　
2

2*
0 2

0

1 1
( ) .x xG x e xe- -

æ ö÷ç ÷= - -ç ÷ç ÷çè ø
 

   

Using , we get the following.

　　  0

2
( )2 *

0 2
0

( ) ,xkdH x xe dx 


- +=

　　 0

2

0 02 0
0

( ) { ( ) 1} .
ux

M x M x u ue du





-

= - +ò

In a similar fashion described above, we have the Proposition 2.
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Proposition 2

　　 0

2

0
0

1 1
( ) .

4 2 4

x

M x e x


 


-

= + -

3　Recursive equation

In this section, we consider the risk reserve process with exponential type claims and we find 

the non-ruin probability depending on the initial state in finite time. Let us denote by  the 

reserve level at time , where  is called the risk reserve process. If the reserve level is 

zero, the process ruins. The fluctuation of  is controlled by three elements : the claim inter-

arrival time, the claim size and the premium rate. Let us assume that the claim inter-arrival time and 

the claim size are independent and identically distributed random variables, respectively. We also 

assume the premium rate is a constant. In the same way of Mikosch [7] we introduce the notation :
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　　 where and are independent.n nX W

The total claim amount process  and the premium income  are defined as 

follows :

The total claim amount process  is define as

　　
( )

1

( ) ( 0),
N t

n
n

S t X t
=

= ³å

where  is the claim number process defined by

　　 ( ) max{ 1 : } ( 0).nN t n T t t= ³ £ ³

We define the premium income by I(t) = ct, which is the accumulated income by time .

Therefore, we obtain the expression of risk reserve process  as follows :

　 ( ) ( ) ( ), ( 0).U t u I t S t t= + - ³

3.1　Mathematical model for the  ruin probability

We make a mathematical model to get the non-ruin probability in finite time (Doi[6]).
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In the risk reserve process , the ruin can occur only at the time  for some 

, since  linearly increases in the intervals . We call the sequence 

 the skeleton process of the risk reserve process  (see Mikosch [7]). By use of 

the skeleton process, we can express the event  in terms of the inter-arrival times , the 

claim sizes , the initial reserve level and the premium rate , as follows :
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Now, we define
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In this section, we propose R Ex Ex and R Ex Er models where R means the risk reserve process, 

the first Ex means that the claim inter-arrival time  has an exponential distribution with rate  

and the next Ex means that the claim size  has an exponential distribution with rate  and 

Er:Erlang distribution with parameter  and phase . In what follows, we omit the subscript .

3.2　pdf. for the process

We find the probability distribution of random variable  for this model. First, let , 

which has the probability density function as follows :
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Next, let us denote

　　　  　　
.

Z X Y

V Y
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Since X and Y are independent random variables, we obtain the joint probability density function 

with respect to Z and V 
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where the domain of v is

　　
0 ( 0)

( 0).

v z

z v z

ì £ <¥ ³ïïíï- £ <¥ <ïî

We obtain the probability density function  of Z as follows :
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 (35)

3.3　Recursive equation for the non-ruin or ruin probability

We denote by  the non-ruin probability that the risk reserve process does not ruin till 
n-th claim arrival time given the initial reserve level u and the premium rate c, that is,

　　 ( , )rn u c  (36)
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1 2
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                        | (0) , ).
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 (37)

Now we obtain the two Theorems for  R Ex Ex model and R Ex Er model.

Theorem 5  For R Ex Ex model, we obtain the probability  as follows :
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 (39)

�Theorem 6  For R Ex Er model, we obtain the non-ruin probability in finite time  as 

follows:
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where
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The ruin probability for R Ex Ex model is given as follows:

Theorem 7
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Also the ruin probability for R Ex Er ( phase k ) model:

Theorem 8
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4　Arrival acceptance window

In this section, we consider a queue where there is an arrival acceptance window generated 

through assigning arrival times to all customers. If a customer needs to receive the service, he has to 

arrive during his assigned window. A customer that cannot enter the system within the arrival 

acceptance window is not offered the service and he must leave the system. The arrival acceptance 

window is generated through assigning arrival times to customers arbitrarily. At most one customer 

can be accepted to the queue in each window. Although the customer's arrival time is scheduled, 

actual one may be delayed. So we assume that the delay-arrival time is arbitrarily distributed. And 

the service time of accepted customer is assumed to be exponentially distributed. We refer this 

queueing system with one server as . Queueing models with the arrival acceptance 

window of this kind can be found in various situations (Doi, Chen and Ōsawa [8], Ōsawa, Doi, Chen 

and Shima [9]). Such a typical example is found in production systems of many factories and in 

scheduled arrival systems of medical clinics. 



− 44 −

RESEARCH BULLETIN　No.86

4.1　Mathematical model

We define a mathematical model for the . The n, th window is generated at 

time  and the n, th customer is scheduled to enter the system during the time interval [ ), 

where   . Let  be the actual arrival time of the  th customer where . 

The customer that does not enter the system by , i.e., , is refused to be offered the 

service. That is,  the customer must leave the system and never come back again.  We assume that 

durations of windows  are independent and identically distributed random variables with a 

distribution function   which has the finite mean . We also assume delay-arrival times 

 are  with a distribution function  having the finite mean . Note that the 

acceptance probability of the window is . The service times of accepted customers 

have a common exponential distribution with the parameter . And the system has one server.

Let  be the number of customers in the system at time . We choose  as the embedded 

points for the system size process  and denote . The embedded process 

Ξ =  constitutes a Markov chain. 

For the , Ōsawa et al.[9] have analyzed the system size process Ξ and obtained 

the necessary and sufficient conditions in which the limiting distribution of the process Ξ exists. In 

order to have the optimal arrival acceptance window size, we introduce costs to the queueing 

system. The system gets the benefit and incurs the waiting cost if a customer is offered the service. 

If a customer is not offered the service, the system incurs a lost-opportunity cost. 

4.2　System size at scheduled times

Let us denote the transition probabilities for the process Ξ as : 

　　 [ ( 1) ( ) ], , 0.ijP n j n i i j = + = = ³P

For  we obtain these  as follows:  
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In the similar way, we have the transition probabilities for  and 0 as follows:  
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For any other cases, i.e., , we have 

 

We obtain the transition probability matrix for the chain Ξ of the  type: 
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By use of the fundamental theory of the  type matrix, we can analyze the process Ξ . 

Let us denote the Laplace Stieltjes transform concerning the distribution  as :  
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We define the generating function for a sequence  :  by（45）, then, for 

, we have  
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We have the following.
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Lemma 1　The equation  has a unique solution such that  if and only if 
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Throughout the paper, we denote as  the solution described in the lemma. Let us introduce 

the distribution functions F and I on  defined by 
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For convenience, we define a function 
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where  is a distribution function on . Then we can have the limiting distribution of the 

system size as follows.

Theorem 9  The process Ξ is positive recurrent if and only if  . 

Moreover, under this condition, the limiting distribution of the system size process is given by  
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where   is the unique solution defined as above and 
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From this theorem, we can obtain the following corollary.  

Corollary 10  The mean stationary system size L and its variance  are given by 
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