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　Abstract　

This study investigates the prevention of market manipulation using a price-impact model of 
financial market trading specified as a linear system. First, I define a trading game in which 
speculators implement a manipulation trading strategy exploiting momentum traders. Second, I 
identify market intervention by a controller （e.g., a central bank） with a control of the system. The 
main result shows that there is a control strategy that prevents market manipulation as a subgame 
perfect equilibrium outcome of the trading game. On the equilibrium path, no intervention is realized. 
This study also characterizes the set of manipulation-proof linear pricing rules of the system. The set 
is very restrictive if there is no control, while the presence of control drastically expands the set.
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Ⅰ．Introduction

This study analyzes the prevention of market manipulation by a crowd of speculators who exploit 
momentum traders. Momentum traders follow a price trend, while speculators intentionally cause a 
price trend and “ignite” the momentum. Then, speculators buy and sell a security and obtain a profit 
margin. This research focuses on the question of whether a market system can spontaneously 
prevent this manipulation.

To address this question, I investigate a price-impact model of financial market trading. Price-
impact models have been investigated in the literature of price formation （e.g., Kyle, 1985） or optimal 
execution （e.g., Almgren and Chriss, 2000）. The novel feature of this study is that it models the 
market system as a linear system and introduces a control of the system.

The trading model is based on Kyle （1985） and Huberman and Stanzl （2004）. There are three 
kinds of participants in the market system: speculators, momentum traders, and a controller （e.g., 
the central bank or government）. In each period n, customers simultaneously place a market order. 
The market price in period n is determined by a pricing rule, which is a mapping from an aggregate 
market order to a non-negative price. Each customer can trade at the market price.
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A pricing rule of the system is said to be viable （i.e., manipulation-proof） if it prevents speculators 
from implementing speculative trading strategies in a certain solution concept. I characterize the 
sets of viable pricing rules in the Nash equilibrium （NE） and subgame perfect equilibrium （SPE）, 
which I refer to as NE-viable pricing rules and SPE-viable pricing rules, respectively, with or 
without a controller.

The model of momentum traders is the same as that of positive feedback traders in De Long et al. 
（1990）1）. As in their model, I assume that momentum traders are unintelligent agents: they 
automatically buy a security today whenever they observe a price gain yesterday. The price gain 
leads them to purchase the security, which in turn leads to further price gains. This self-perpetuating 
behavior continuously raises market prices. Speculators exploit this property of momentum traders 
and can earn a profit. For example, a speculator buys a unit of the security and sells it when the 
price rises; when the speculator sells the unit, another speculator simultaneously buys the same unit 
to cancel out the negative price impact of the sale.

The central results of this study are as follows. First, I characterize the set of NE-viable pricing 
rules and the set of SPE-viable pricing rules in the absence of controls. To compare my 
characterization with the result of Huberman and Stanzl （2004）, I also characterize the set of viable 
pricing rules without momentum traders and a controller, which I simply refer to as the maximal 
set. I find that both the sets of NE-viable and SPE-viable pricing rules are very restrictive compared 
to the maximal set （Proposition 2）. In particular, the result shows that the “Kyle-type” pricing rule, 
that is, pn = pn－1 + λnqn （Kyle （1985））, is not NE-viable （and hence, not SPE-viable） in the absence of 
controls. Second, I characterize the sets of NE-viable and SPE-viable pricing rules in the presence of 
controls. I find that the set of SPE-viable pricing rules is equal to the maximal set with a suitable 
control strategy （Theorem 1）. On the equilibrium path, the control strategy does not place a market 
order.

These results show that the market system without a controller cannot spontaneously prevent 
market manipulation, unless the system uses very restrictive pricing rules; if we allow the use of any 
viable pricing rule, control by a third party is necessary.

This result is a new finding on the viable pricing rules. Huberman and Stanzl （2004） show that the 
linear pricing rules are the key to viability. According to their result, some linear pricing rules are 
sufficient to prevent the market manipulation of my model if there are no momentum traders. 
However, their result is not relevant when market prices show a trend. The set of viable pricing 
rules in the environment of Huberman and Stanzl （2004） is the maximal set of my model. The main 
finding of this study is that the set remains viable in my environment if and only if the control is 
present.

A related study, Ohashi （2018）, analyzes the strategic trading model between a single speculator 
and multiple dealers in the market with momentum traders. He shows that rational dealers might 

1）　Hong and Stein （1999） analyze a model introducing momentum traders. Jegadeesh and Titman （1993） document 
the significance of momentum strategies. More recent empirical studies report momentum effects. See, for example, 
Moskowitz et al. （2012） and Baltzer et al. （2019）.
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use the Kyle-type pricing rule to exploit momentum traders.

Ⅱ．The Model

Assume that there is a single security and an infinite trading period n ∈ {1, 2, 3 · · · } =: 
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pricing rule to exploit momentum traders.

II The Model

Assume that there is a single security and an infinite trading period n ∈
{1, 2, 3 · · · } =: N. There are three types of market participants in the market

system: speculators, momentum traders, and a controller. Speculators are

risk neutral, and each of them lives for two periods: speculator n enters the

market in period n, trades in periods n and n+1, and exits the market before

period n+2. Momentum traders are infinitely lived. Their trading behavior

is proportional to past price movements (see Assumption 1). The controller

is also infinitely lived. This study investigates two cases: the absence and

presence of controls.

The market system is described as a pricing rule following Huberman

and Stanzl (2004). At the beginning of each period n, the market system bids

a price quote, p̃n. Each customer can observe the quote before submitting

his or her order. For market order qn, which is a quantity of the security,
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the system determines the market price, pn, as

pn = p̃n + Pn(qn) (1)

where Pn(qn) is a price-impact function, which describes the immediate price

reaction to market order qn. Each customer trades at pn in period n. If

necessary, the market system clears the market by using its own inventory

of the security. After the trade, the system updates the quote as

p̃n+1 = p̃n + Un(qn) (2)

and proceeds to the next period, where Un(qn) is a price-update function

that captures only trade’s permanent price impact. Eqs. (1) and (2) yield

pn+1 = pn + Un(qn)− Pn(qn) + Pn+1(qn+1) (3)

and

pn = p0 +
n−1∑
k=1

Uk(qk) + Pn(qn),

where p0 is the initial price in the market. I refer to (Un, Pn, ) as a pricing

rule in period n. This model ignores the stochastic term on price formation,

in which it differs from Huberman and Stanzl (2004).

Let xin, i = 1, 2, denote speculator n’s market order in his or her ith

period, and let y1 = x11 and yn = x2n−1 + x1n for each n ≧ 2. Let ξn and

un denote the market orders of the momentum traders and the controller,

respectively. In each trading period, active speculators, momentum traders,

and the controller simultaneously place their market orders, that is, qn =

yn + ξn + un ∈ R. After the trade, (pn, qn) is public, but not (yn, ξn, un).

Here, I make the following three assumptions about the model.

Assumption 1

1. xin ∈ {−1, 0, 1} and x1n + x2n = 0 for each n ∈ N.

2. ξn = β(pn−1 − pn−2) with a constant β ∈ R+ if n ≧ 2; and ξ1 ≡ 0.

3. Un(qn) = λqn and Pn(qn) = µqn, with constants λ, µ ∈ R++.

Assumption 1-1 is a normalization of speculators’ trading. Each speculator’s

order placement is bounded, and each speculator exits the market with a zero

position. Assumption 1-2 characterizes the behavior of momentum traders,

as in De Long et al. (1990). Assumption 1-3 implies that the pricing rules

are linear and time independent. Huberman and Stanzl (2004) provide the
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the controller simultaneously place their market orders, that is, qn = yn + ξn + un	 	 	 	 	 	 . After the  
trade, （pn, qn） is public, but not （yn, ξn, un）.

Here, I make the following three assumptions about the model.

Assumption 1

Assumption 1-1 is a normalization of speculators’ trading. Each speculator’s order placement is 
bounded, and each speculator exits the market with a zero position. Assumption 1-2 characterizes 
the behavior of momentum traders, as in De Long et al. （1990）. Assumption 1-3 implies that the 
pricing rules are linear and time independent. Huberman and Stanzl （2004） provide the rationale for 
using a linear price-update function2）. The linearity assumption on the price-impact functions is for 
simplicity.

1　Definitions of the games
The set of speculators’ action spaces is

rationale for using a linear price-update function.2 The linearity assumption

on the price-impact functions is for simplicity.

1 Definitions of the games

The set of speculators’ action spaces is

X = { (x1, x2) | xi ∈ {−1, 0, 1}, x1 + x2 = 0}.

I describe xn ∈ X as speculator n’s action. Speculator n’s payoff is −pnx
1
n−

pn+1x
2
n = (pn+1 − pn)x

1
n.

Let Hn denote the set of all possible prices and quantities until period

n − 1, that is, H1 = {∅} and Hn = (R+ × R)n−1. I refer to hn ∈ Hn

as the history until period n − 1. I define the strategy of speculator n as

a mapping sn : Hn → X. This study focuses on pure strategies. Let Sn

denote the set of all possible strategies of speculator n and s ∈
∏

n∈N Sn

denote the strategy profile of speculators. Let πn(s) denote speculator n’s

payoff.3 Hence, (N, (Sn)n∈N, (πn)n∈N) defines a game. Γ(hn) describes the

subgame beginning at history hn and πn(s | hn) speculator n’s payoff in

subgame Γ(hn).

Definition 1 The strategy profile s is an NE if πn(s) ≧ πn(s
′
n, s−n) holds

for each n ∈ N and s′n ∈ Sn, where s−n ∈
∏

k∈N\{n} Sk. The strategy profile

s is an SPE if πn(s | hn) ≧ πn(s
′
n, s−n | hn) holds for each n ∈ N, s′n ∈ Sn,

and hn ∈ Hn.

I refer to an outcome such that xn = (0, 0) for each n ∈ N as no trade.

The market is NE-viable (SPE-viable) if, under the associated pricing rule

(λ, µ), any NE (SPE) outcome leads to no trade. Then, (λ, µ) is said to be

a viable pricing rule.

III The Results without Controls

This section aims to characterize the viable sets when the controller is ab-

sent.

2Huberman and Stanzl (2004) show that time-independent price-update functions must
be quasi-linear for market viability, that is, U(qn) = λqn + R(qn) such that E(R(q̃n) |
Gn) = 0, for an information set Gn. Because there are no random variables in my model,
the quasi-linearity is equivalent to linearity.

3By definition, π1(s) = πn(s1, s2) and πn(s) = πn(sn−1, sn, sn+1) for each n ≧ 2.
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the system determines the market price, pn, as

pn = p̃n + Pn(qn) (1)

where Pn(qn) is a price-impact function, which describes the immediate price

reaction to market order qn. Each customer trades at pn in period n. If

necessary, the market system clears the market by using its own inventory

of the security. After the trade, the system updates the quote as

p̃n+1 = p̃n + Un(qn) (2)

and proceeds to the next period, where Un(qn) is a price-update function

that captures only trade’s permanent price impact. Eqs. (1) and (2) yield

pn+1 = pn + Un(qn)− Pn(qn) + Pn+1(qn+1) (3)

and

pn = p0 +
n−1∑
k=1

Uk(qk) + Pn(qn),

where p0 is the initial price in the market. I refer to (Un, Pn, ) as a pricing

rule in period n. This model ignores the stochastic term on price formation,

in which it differs from Huberman and Stanzl (2004).

Let xin, i = 1, 2, denote speculator n’s market order in his or her ith

period, and let y1 = x11 and yn = x2n−1 + x1n for each n ≧ 2. Let ξn and

un denote the market orders of the momentum traders and the controller,

respectively. In each trading period, active speculators, momentum traders,

and the controller simultaneously place their market orders, that is, qn =

yn + ξn + un ∈ R. After the trade, (pn, qn) is public, but not (yn, ξn, un).

Here, I make the following three assumptions about the model.

Assumption 1

1. xin ∈ {−1, 0, 1} and x1n + x2n = 0 for each n ∈ N.

2. ξn = β(pn−1 − pn−2) with a constant β ∈ R+ if n ≧ 2; and ξ1 ≡ 0.

3. Un(qn) = λqn and Pn(qn) = µqn, with constants λ, µ ∈ R++.

Assumption 1-1 is a normalization of speculators’ trading. Each speculator’s

order placement is bounded, and each speculator exits the market with a zero

position. Assumption 1-2 characterizes the behavior of momentum traders,

as in De Long et al. (1990). Assumption 1-3 implies that the pricing rules

are linear and time independent. Huberman and Stanzl (2004) provide the
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1 The benchmark model

Since the price-impact model of this study is based on Huberman and Stanzl

(2004), I employ their model as a benchmark. They analyze a single N -

period-lived speculator model without momentum traders. The set of the

speculator’s action space is X =
∪∞

N=1XN , where

XN =

{
(x1, . . . , xN ) ∈ RN |

N∑
n=1

xn = 0

}
.

The speculator’s strategy is s : H1 → X. For each s, there is a unique N

such that the speculator’s payoff is π̂N (s) := −
∑N

n=1 pnxn. Let 0N denote

the zero vector of RN and let Y =
∪∞

N=1{0N}. The market is SPE-viable if

and only if the optimal strategy s is such that s : H1 → Y .

Proposition 1 In the benchmark model, the market is SPE-viable if and

only if (λ, µ) satisfies λ ≦ 2µ.

Proof. For each s, if N = 1, x1 = 0 and π̂1(s) = 0; otherwise,

π̂N (s) = −
N∑

n=1

(p0 + λ

n−1∑
k=1

xk + µxn)xn

= −p0

N∑
n=1

xn − λ
N∑

n=1

(
n−1∑
k=1

xk

)
xn − µ

N∑
n=1

x2n

= −λ
∑
i<j

xixj − µ

N∑
n=1

x2n

(
∵

N∑
n=1

xn = 0.

)

= (2µ− λ)

(
−1

2

N∑
n=1

x2n

)
.


∵

N∑
i=1

xi

N∑
j=1

xj =

N∑
n=1

x2n + 2
∑
i<j

xixj = 0.




This equality implies that 2µ − λ ≧ 0 is necessary and sufficient to ensure

SPE-viability. ■

Proposition 1 implies that the permanent price impact should be suffi-

ciently small compared with the immediate price impact for SPE-viability in

the benchmark model. Proposition 1 also defines the maximal set of viable

pricing rules under Assumption 1-3.

Definition 2 The set of pricing rules M is said to be the maximal set if

M := {(λ, µ) ∈ R2
++ | λ ≦ 2µ}.
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Proposition 2 No trade NE exists if and only if

(λ, µ) ∈ M1(β) := {(λ, µ) ∈ R++ | R ≡ βµ2 − 2µ+ λ ≦ 0}.

Proof. Suppose that the NE strategy profile s realizes xn = (0, 0) for

each n ∈ N. It is sufficient to show that speculator 1 has no incentive

to deviate from s. Suppose that x1 = (1,−1). Then, p1 = p0 + µ and

p2 = p0+λ+µ(βµ−1). The payoff is p2−p1 = βµ2−2µ+λ. I obtain the same

payoff when x1 = (−1, 1). Hence, NE-viability requires βµ2 − 2µ + λ ≦ 0.

■
Condition R ≦ 0 reduces to λ ≦ 2µ when β = 0, which implies that

M1(β) ⊂ M for each β ≧ 0 and M1(0) = M . However, Proposition 2 does

not ensure the uniqueness of the equilibrium outcomes. Hence, the market

is NE-viable only if (λ, µ) ∈ M1(β).

Next, I provide a condition on which we can ignore some undesirable

NEs. Let s′ denote the strategy profile, which maps xn = (1,−1) for each

n ≧ 1. Then, I have y1 = 1 and yn = 0 for each n ≧ 2. From Assumptions

1-2 and 1-3, the sequence (yn)
∞
n=1 generates a sequence (qn)

∞
n=1 such that

q1 = y1 = 1 and

qn = ξn = β(pn−1 − pn−2)

= β((λ− µ)qn−2 + µqn−1)

for each n ≧ 2. Then, the payoff of speculator n is

pn+1 − pn = µqn+1 + (λ− µ)qn

=
qn+2

β
.

If D ≡ βµ2−4µ+4λ ≧ 0, then qn > 0 for each n ≧ 1 (see Appendix). In this

case, the market price will grow monotonically. Therefore, each speculator

n obtains a positive profit margin. This observation implies that strategy

profile s′ is an NE. Hence, D < 0 is necessary for NE-viability. Let M2(β)

denote the set of pricing rules such that

M2(β) := {(λ, µ) ∈ R++ | D ≡ βµ2 − 4µ+ 4λ < 0}.
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M2（β） denote the set of pricing rules such that

Proposition 3　The market is NE-viable only ifProposition 3 The market is NE-viable only if

(λ, µ) ∈ M1(β) ∩M2(β).

Proof. See Appendix. ■

The converse might not be true. Appendix shows that, if D < 0, there

exist infinitely many n such that ξn < 0 on the path of s′. In this case,

there exists n∗ such that speculator n∗ is better off choosing (0, 0), while

speculators 1 to n∗−1 choose (1,−1). However, speculators 1 to n∗−1 could

gain a positive profit even if speculators n ≧ n∗ choose (0, 0). Moreover,

there may be other complicated strategies that bring a positive profit for

speculators.

Finally, I provide a sufficient condition that ensures SPE-viability.

Proposition 4 The market is SPE-viable if

(λ, µ) ∈ M3(β) := {(λ, µ) ∈ R++ | L ≡ βµ2 − 2µ+ 2λ < 0}.

Proof. See Appendix. ■

Because SPE-viability implies NE-viability, Proposition 4 provides a suf-

ficient condition for NE-viability. In the case of no momentum traders,

β = 0, we have

M2(0) = M3(0) ⊊ M1(0) = M,

which gives the following result.

Corollary 1 We assume that β = 0. The market is NE-viable if and only

if λ < µ.

Kyle’s (1985) equilibrium pricing rule, which is an N -period trading

model under asymmetric information, takes the form pn = pn−1 + λnqn. In

my model, this pricing rule maps each price to the area λ = µ. Hence,

the Kyle’s pricing rule does not preclude the manipulation strategy of this

study.

Figure 1 illustrates the characterization results. It shows that M3(β) ⊂
M1(β); NE-viability implies R ≦ 0 (Proposition 2) and this is implied by

L < 0 (Proposition 4). It also shows that neither M1(β) ⊂ M2(β) nor

M2(β) ⊂ M1(β); Conditions R ≦ 0 and D < 0 are both necessary for

NE-viability (Proposition 3), but there is no inclusive relationship.
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M1（β）; Conditions R ≦ 0 and D < 0 are both necessary for NE-viability 
（Proposition 3）, but there is no inclusive relationship.

2 The present model

I return to the present model: two-period-lived speculators and β ≧ 0. I

propose three results. The first is the following.

Proposition 2 No trade NE exists if and only if

(λ, µ) ∈ M1(β) := {(λ, µ) ∈ R++ | R ≡ βµ2 − 2µ+ λ ≦ 0}.

Proof. Suppose that the NE strategy profile s realizes xn = (0, 0) for

each n ∈ N. It is sufficient to show that speculator 1 has no incentive

to deviate from s. Suppose that x1 = (1,−1). Then, p1 = p0 + µ and

p2 = p0+λ+µ(βµ−1). The payoff is p2−p1 = βµ2−2µ+λ. I obtain the same

payoff when x1 = (−1, 1). Hence, NE-viability requires βµ2 − 2µ + λ ≦ 0.

■
Condition R ≦ 0 reduces to λ ≦ 2µ when β = 0, which implies that

M1(β) ⊂ M for each β ≧ 0 and M1(0) = M . However, Proposition 2 does

not ensure the uniqueness of the equilibrium outcomes. Hence, the market

is NE-viable only if (λ, µ) ∈ M1(β).

Next, I provide a condition on which we can ignore some undesirable

NEs. Let s′ denote the strategy profile, which maps xn = (1,−1) for each

n ≧ 1. Then, I have y1 = 1 and yn = 0 for each n ≧ 2. From Assumptions

1-2 and 1-3, the sequence (yn)
∞
n=1 generates a sequence (qn)

∞
n=1 such that

q1 = y1 = 1 and

qn = ξn = β(pn−1 − pn−2)

= β((λ− µ)qn−2 + µqn−1)

for each n ≧ 2. Then, the payoff of speculator n is

pn+1 − pn = µqn+1 + (λ− µ)qn

=
qn+2

β
.

If D ≡ βµ2−4µ+4λ ≧ 0, then qn > 0 for each n ≧ 1 (see Appendix). In this

case, the market price will grow monotonically. Therefore, each speculator

n obtains a positive profit margin. This observation implies that strategy

profile s′ is an NE. Hence, D < 0 is necessary for NE-viability. Let M2(β)

denote the set of pricing rules such that

M2(β) := {(λ, µ) ∈ R++ | D ≡ βµ2 − 4µ+ 4λ < 0}.
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The viable pricing rule of the present model is more restrictive than that of the benchmark model, 
because the present model allows speculators to do “support buying” （i.e., the next speculator’s 
purchase cancels out a negative impact on price by the current speculator’s sale）. The chain of such 
behavior is profitable to speculators.

The viable pricing rule of the present model is more restrictive than that

of the benchmark model, because the present model allows speculators to do

“support buying” (i.e., the next speculator’s purchase cancels out a negative

impact on price by the current speculator’s sale). The chain of such behavior

is profitable to speculators.

λ

µ

λ = µ
λ = 2µ

0

D ≡ βµ2 − 4µ+ 4λ = 0

2
β

1
β

1
β

1
2β

L ≡ βµ2 − 2µ+ 2λ = 0

R ≡ βµ2 − 2µ+ λ = 0

Figure 1: The shaded area exhibits M3(β). This figure shows that M3(β) ⊂
M1(β) but there is no inclusive relationship between M1(β) and M2(β).

IV The Results with Controls

This section aims to characterize the sets of viable pricing rules when the

controller is present.

Let un denote the controller’s market order placed in period n. I refer

to the sequence u = (un)
∞
n=1 as a control. Let uk denote a control such that

un = 0 for each n < k.

Suppose that each speculator n chooses xn = (1,−1). Eq. (3) with As-

sumption 1 yields

pn+1 = pn + (λ− µ)qn + µqn+1 (4)

9

Figure 1.  The shaded area exhibits M3（β）. This figure shows that M3（β） ⊂M1（β） but there 
is no inclusive relationship between M1（β） and M2（β）.
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for each n ≧ 1. Because for each n ≧ 1. Because qn+1 = ξn+1 + un+1, Assumption 1 implies

qn+1 = βµqn + β(λ− µ)qn−1 + un+1 (5)

for each n ≧ 1. I describe Eqs. (4) and (5) as a difference equation system:
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where
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 , un = un+1. (7)

I refer to zn as a state in period n.

Here, the definition of controllability is presented.

Definition 3 (Elaydi (2005), p. 432.) System (6) is said to be controllable

if for each k ∈ N, for each initial state zk−1, and for each final state z∗,

there exists a finite number N > k − 1 and a control uk, k ≦ N , such that

zN = z∗.

If System (6) is controllable, the controller can set a market condition to a

final state within finite periods only by placing market orders. The market

control succeeds if System (6) is controllable. Based on discrete control the-

ory, System (6) is controllable if and only if the matrix W = [B, AB, A2B]

has a full row rank.4 In the present model,

W =



µ µ(βµ) + λ µ(βµ)2 − (µ− 2λ)βµ+ λ

1 βµ (βµ)2 − βµ+ βλ

0 1 βµ




and det(W ) = λ. I summarize the above as a proposition.

Proposition 5 Market control succeeds if and only if λ > 0.

Next, I require that any control stabilizes the market in the sense that,

for each k, uk must asymptotically satisfy (pn, qn) → (pk−1, qk−1). Consider

4See Theorem 10.4 of Elaydi (2005, p. 433), which is presented in Appendix for conve-
nience.
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for each n ≧ 1. I describe Eqs. （4） and （5） as a difference equation system:

 （6）

where

for each n ≧ 1. Because qn+1 = ξn+1 + un+1, Assumption 1 implies

qn+1 = βµqn + β(λ− µ)qn−1 + un+1 (5)

for each n ≧ 1. I describe Eqs. (4) and (5) as a difference equation system:

zn+1 = Azn +Bun, (6)

where

A =



1 λ− µ+ βµ2 β(λ− µ)µ

0 βµ β(λ− µ)

0 1 0


 , B =



µ

1

0




and

zn =




pn

qn

qn−1


 , un = un+1. (7)

I refer to zn as a state in period n.

Here, the definition of controllability is presented.

Definition 3 (Elaydi (2005), p. 432.) System (6) is said to be controllable

if for each k ∈ N, for each initial state zk−1, and for each final state z∗,

there exists a finite number N > k − 1 and a control uk, k ≦ N , such that

zN = z∗.

If System (6) is controllable, the controller can set a market condition to a

final state within finite periods only by placing market orders. The market

control succeeds if System (6) is controllable. Based on discrete control the-

ory, System (6) is controllable if and only if the matrix W = [B, AB, A2B]

has a full row rank.4 In the present model,

W =



µ µ(βµ) + λ µ(βµ)2 − (µ− 2λ)βµ+ λ

1 βµ (βµ)2 − βµ+ βλ

0 1 βµ




and det(W ) = λ. I summarize the above as a proposition.

Proposition 5 Market control succeeds if and only if λ > 0.

Next, I require that any control stabilizes the market in the sense that,

for each k, uk must asymptotically satisfy (pn, qn) → (pk−1, qk−1). Consider

4See Theorem 10.4 of Elaydi (2005, p. 433), which is presented in Appendix for conve-
nience.

10

and

 （7）

I refer to zn as a state in period n.
Here, the definition of controllability is presented.

Definition 3 （Elaydi （2005）, p. 432.）　System （6） is said to be controllable if for each

for each n ≧ 1. Because qn+1 = ξn+1 + un+1, Assumption 1 implies

qn+1 = βµqn + β(λ− µ)qn−1 + un+1 (5)

for each n ≧ 1. I describe Eqs. (4) and (5) as a difference equation system:

zn+1 = Azn +Bun, (6)

where

A =



1 λ− µ+ βµ2 β(λ− µ)µ

0 βµ β(λ− µ)

0 1 0


 , B =



µ

1

0




and

zn =




pn

qn

qn−1


 , un = un+1. (7)

I refer to zn as a state in period n.

Here, the definition of controllability is presented.

Definition 3 (Elaydi (2005), p. 432.) System (6) is said to be controllable

if for each k ∈ N, for each initial state zk−1, and for each final state z∗,

there exists a finite number N > k − 1 and a control uk, k ≦ N , such that

zN = z∗.

If System (6) is controllable, the controller can set a market condition to a

final state within finite periods only by placing market orders. The market

control succeeds if System (6) is controllable. Based on discrete control the-

ory, System (6) is controllable if and only if the matrix W = [B, AB, A2B]

has a full row rank.4 In the present model,

W =



µ µ(βµ) + λ µ(βµ)2 − (µ− 2λ)βµ+ λ

1 βµ (βµ)2 − βµ+ βλ

0 1 βµ




and det(W ) = λ. I summarize the above as a proposition.

Proposition 5 Market control succeeds if and only if λ > 0.

Next, I require that any control stabilizes the market in the sense that,

for each k, uk must asymptotically satisfy (pn, qn) → (pk−1, qk−1). Consider

4See Theorem 10.4 of Elaydi (2005, p. 433), which is presented in Appendix for conve-
nience.

10

, for each 
initial state zk－1, and for each final state z*, there exists a finite number N > k － 1 and a control uk, 
k ≦ N, such that zN = z*.

If System （6） is controllable, the controller can set a market condition to a final state within finite 
periods only by placing market orders. The market control succeeds if System （6） is controllable. 
Based on discrete control theory, System （6） is controllable if and only if the matrix W = 
 [B, AB, A2B] has a full row rank4）. In the present model,

for each n ≧ 1. Because qn+1 = ξn+1 + un+1, Assumption 1 implies

qn+1 = βµqn + β(λ− µ)qn−1 + un+1 (5)

for each n ≧ 1. I describe Eqs. (4) and (5) as a difference equation system:

zn+1 = Azn +Bun, (6)

where

A =



1 λ− µ+ βµ2 β(λ− µ)µ

0 βµ β(λ− µ)

0 1 0


 , B =



µ

1

0




and

zn =




pn

qn

qn−1


 , un = un+1. (7)

I refer to zn as a state in period n.

Here, the definition of controllability is presented.

Definition 3 (Elaydi (2005), p. 432.) System (6) is said to be controllable

if for each k ∈ N, for each initial state zk−1, and for each final state z∗,

there exists a finite number N > k − 1 and a control uk, k ≦ N , such that

zN = z∗.

If System (6) is controllable, the controller can set a market condition to a

final state within finite periods only by placing market orders. The market

control succeeds if System (6) is controllable. Based on discrete control the-

ory, System (6) is controllable if and only if the matrix W = [B, AB, A2B]

has a full row rank.4 In the present model,

W =



µ µ(βµ) + λ µ(βµ)2 − (µ− 2λ)βµ+ λ

1 βµ (βµ)2 − βµ+ βλ

0 1 βµ




and det(W ) = λ. I summarize the above as a proposition.

Proposition 5 Market control succeeds if and only if λ > 0.

Next, I require that any control stabilizes the market in the sense that,

for each k, uk must asymptotically satisfy (pn, qn) → (pk−1, qk−1). Consider

4See Theorem 10.4 of Elaydi (2005, p. 433), which is presented in Appendix for conve-
nience.

10

and det（W ） = λ. I summarize the above as a proposition.

Proposition 5　Market control succeeds if and only if λ > 0.

Next, I require that any control stabilizes the market in the sense that, for each k, uk must 
asymptotically satisfy （pn, qn） → （pk−1, qk−1）. Consider System （6） with a linear feedback un = −Szn, 
where S = （σ1, σ2, σ3） is a real （1 × 3） matrix. Then,

4）　See Theorem 10.4 of Elaydi （2005, p. 433）, which is presented in Appendix for convenience.

for each n ≧ 1. Because qn+1 = ξn+1 + un+1, Assumption 1 implies

qn+1 = βµqn + β(λ− µ)qn−1 + un+1 (5)

for each n ≧ 1. I describe Eqs. (4) and (5) as a difference equation system:

zn+1 = Azn +Bun, (6)

where

A =



1 λ− µ+ βµ2 β(λ− µ)µ

0 βµ β(λ− µ)

0 1 0


 , B =



µ

1

0




and

zn =




pn

qn

qn−1


 , un = un+1. (7)

I refer to zn as a state in period n.

Here, the definition of controllability is presented.

Definition 3 (Elaydi (2005), p. 432.) System (6) is said to be controllable

if for each k ∈ N, for each initial state zk−1, and for each final state z∗,

there exists a finite number N > k − 1 and a control uk, k ≦ N , such that

zN = z∗.

If System (6) is controllable, the controller can set a market condition to a

final state within finite periods only by placing market orders. The market

control succeeds if System (6) is controllable. Based on discrete control the-

ory, System (6) is controllable if and only if the matrix W = [B, AB, A2B]

has a full row rank.4 In the present model,

W =



µ µ(βµ) + λ µ(βµ)2 − (µ− 2λ)βµ+ λ

1 βµ (βµ)2 − βµ+ βλ

0 1 βµ




and det(W ) = λ. I summarize the above as a proposition.

Proposition 5 Market control succeeds if and only if λ > 0.

Next, I require that any control stabilizes the market in the sense that,

for each k, uk must asymptotically satisfy (pn, qn) → (pk−1, qk−1). Consider

4See Theorem 10.4 of Elaydi (2005, p. 433), which is presented in Appendix for conve-
nience.

10

for each n ≧ 1. Because qn+1 = ξn+1 + un+1, Assumption 1 implies

qn+1 = βµqn + β(λ− µ)qn−1 + un+1 (5)

for each n ≧ 1. I describe Eqs. (4) and (5) as a difference equation system:

zn+1 = Azn +Bun, (6)

where

A =



1 λ− µ+ βµ2 β(λ− µ)µ

0 βµ β(λ− µ)

0 1 0


 , B =



µ

1

0




and

zn =




pn

qn

qn−1


 , un = un+1. (7)

I refer to zn as a state in period n.

Here, the definition of controllability is presented.

Definition 3 (Elaydi (2005), p. 432.) System (6) is said to be controllable

if for each k ∈ N, for each initial state zk−1, and for each final state z∗,

there exists a finite number N > k − 1 and a control uk, k ≦ N , such that

zN = z∗.

If System (6) is controllable, the controller can set a market condition to a

final state within finite periods only by placing market orders. The market

control succeeds if System (6) is controllable. Based on discrete control the-

ory, System (6) is controllable if and only if the matrix W = [B, AB, A2B]

has a full row rank.4 In the present model,

W =



µ µ(βµ) + λ µ(βµ)2 − (µ− 2λ)βµ+ λ

1 βµ (βµ)2 − βµ+ βλ

0 1 βµ




and det(W ) = λ. I summarize the above as a proposition.

Proposition 5 Market control succeeds if and only if λ > 0.

Next, I require that any control stabilizes the market in the sense that,

for each k, uk must asymptotically satisfy (pn, qn) → (pk−1, qk−1). Consider

4See Theorem 10.4 of Elaydi (2005, p. 433), which is presented in Appendix for conve-
nience.

10



（ 260 ） KEIZAI SHUSHI　Vol. 92　No. ２

− 244 −

System (6) with a linear feedback un = −Szn, where S = (σ1, σ2, σ3) is a

real (1× 3) matrix. Then,

zn+1 = Azn +Bun

= (A−BS)zn.

System (6) is stabilizable if, for each k, there exists matrix S such that

control uk = −Szk achieves lim
k→∞

zk = zk−1. Market stabilization succeeds

if System (6) is stabilizable. I define z∗ = zk−1 and yk = zk−z∗ to describe

System (6) as follows:

yk+1 = A(yk + z∗) +Buk − z∗ = zk+1 − z∗.

Stabilization to an initial state z∗ is equivalent to stabilization to 0. Hence,

the goal of stabilization is zk → 0, without loss of generality. The next

proposition is useful for stabilization.

Proposition 6 (Elaydi (2005), Theorem 10.19.) Let Φ = {φ1, φ2, φ3} be

an arbitrary set of 3 complex numbers such that Φ = {φ̄1, φ̄2, φ̄3} = Φ.

Then, System (6) is controllable if and only if there exists a matrix S such

that the eigenvalues of A−BS are the set Φ.

Thus, System (6) is stabilizable if the eigenvalues of A − BS lie inside the

unit disk. Applying Proposition 6 to System (6), I obtain the following

result.

Proposition 7 Market stabilization succeeds if λ > 0.

Proof. Without loss of generality, I set zk−1 = 0. Let Φ = {φ1, φ2, φ3}
denote the set of complex numbers such that |φi| < 1 for each i = 1, 2, 3. I

define δ1 = −(φ1 +φ2 +φ3), δ2 = φ1φ2 +φ2φ3 +φ3φ1, and δ3 = −φ1φ2φ3.

The characteristic polynomial of A−BS is

det (A−BS − φI) =

∣∣∣∣∣∣∣

1− µσ1 − φ λ− µ+ βµ2 − µσ2 β(λ− µ)µ− µσ3

−σ1 βµ− σ2 − φ β(λ− µ)− σ3

0 1 −φ

∣∣∣∣∣∣∣
= 0,

which is equivalent to

φ3 + (µσ1 + σ2 − βµ− 1)φ2 + ((λ− µ)σ1 − σ2 + σ3 − β(λ− µ) + βµ)φ

− σ3 + β(λ− µ) = 0.

11

System （6） is stabilizable if, for each k, there exists matrix S such that control uk = －Szk achieves 

System (6) with a linear feedback un = −Szn, where S = (σ1, σ2, σ3) is a

real (1× 3) matrix. Then,

zn+1 = Azn +Bun

= (A−BS)zn.

System (6) is stabilizable if, for each k, there exists matrix S such that

control uk = −Szk achieves lim
k→∞

zk = zk−1. Market stabilization succeeds

if System (6) is stabilizable. I define z∗ = zk−1 and yk = zk−z∗ to describe

System (6) as follows:

yk+1 = A(yk + z∗) +Buk − z∗ = zk+1 − z∗.

Stabilization to an initial state z∗ is equivalent to stabilization to 0. Hence,

the goal of stabilization is zk → 0, without loss of generality. The next

proposition is useful for stabilization.

Proposition 6 (Elaydi (2005), Theorem 10.19.) Let Φ = {φ1, φ2, φ3} be

an arbitrary set of 3 complex numbers such that Φ = {φ̄1, φ̄2, φ̄3} = Φ.

Then, System (6) is controllable if and only if there exists a matrix S such

that the eigenvalues of A−BS are the set Φ.

Thus, System (6) is stabilizable if the eigenvalues of A − BS lie inside the

unit disk. Applying Proposition 6 to System (6), I obtain the following

result.

Proposition 7 Market stabilization succeeds if λ > 0.

Proof. Without loss of generality, I set zk−1 = 0. Let Φ = {φ1, φ2, φ3}
denote the set of complex numbers such that |φi| < 1 for each i = 1, 2, 3. I

define δ1 = −(φ1 +φ2 +φ3), δ2 = φ1φ2 +φ2φ3 +φ3φ1, and δ3 = −φ1φ2φ3.

The characteristic polynomial of A−BS is

det (A−BS − φI) =

∣∣∣∣∣∣∣

1− µσ1 − φ λ− µ+ βµ2 − µσ2 β(λ− µ)µ− µσ3

−σ1 βµ− σ2 − φ β(λ− µ)− σ3

0 1 −φ

∣∣∣∣∣∣∣
= 0,

which is equivalent to

φ3 + (µσ1 + σ2 − βµ− 1)φ2 + ((λ− µ)σ1 − σ2 + σ3 − β(λ− µ) + βµ)φ

− σ3 + β(λ− µ) = 0.

11

. Market stabilization succeeds if System （6） is stabilizable. I define z* = zk－1 and 
yk = zk−z* to describe System （6） as follows:

System (6) with a linear feedback un = −Szn, where S = (σ1, σ2, σ3) is a

real (1× 3) matrix. Then,

zn+1 = Azn +Bun

= (A−BS)zn.

System (6) is stabilizable if, for each k, there exists matrix S such that

control uk = −Szk achieves lim
k→∞

zk = zk−1. Market stabilization succeeds

if System (6) is stabilizable. I define z∗ = zk−1 and yk = zk−z∗ to describe

System (6) as follows:

yk+1 = A(yk + z∗) +Buk − z∗ = zk+1 − z∗.

Stabilization to an initial state z∗ is equivalent to stabilization to 0. Hence,

the goal of stabilization is zk → 0, without loss of generality. The next

proposition is useful for stabilization.

Proposition 6 (Elaydi (2005), Theorem 10.19.) Let Φ = {φ1, φ2, φ3} be

an arbitrary set of 3 complex numbers such that Φ = {φ̄1, φ̄2, φ̄3} = Φ.

Then, System (6) is controllable if and only if there exists a matrix S such

that the eigenvalues of A−BS are the set Φ.

Thus, System (6) is stabilizable if the eigenvalues of A − BS lie inside the

unit disk. Applying Proposition 6 to System (6), I obtain the following

result.

Proposition 7 Market stabilization succeeds if λ > 0.

Proof. Without loss of generality, I set zk−1 = 0. Let Φ = {φ1, φ2, φ3}
denote the set of complex numbers such that |φi| < 1 for each i = 1, 2, 3. I

define δ1 = −(φ1 +φ2 +φ3), δ2 = φ1φ2 +φ2φ3 +φ3φ1, and δ3 = −φ1φ2φ3.

The characteristic polynomial of A−BS is

det (A−BS − φI) =

∣∣∣∣∣∣∣

1− µσ1 − φ λ− µ+ βµ2 − µσ2 β(λ− µ)µ− µσ3

−σ1 βµ− σ2 − φ β(λ− µ)− σ3

0 1 −φ

∣∣∣∣∣∣∣
= 0,

which is equivalent to

φ3 + (µσ1 + σ2 − βµ− 1)φ2 + ((λ− µ)σ1 − σ2 + σ3 − β(λ− µ) + βµ)φ

− σ3 + β(λ− µ) = 0.

11

Stabilization to an initial state z* is equivalent to stabilization to 0. Hence, the goal of stabilization is  
zk → 0, without loss of generality. The next proposition is useful for stabilization.

Proposition 6 （Elaydi （2005）, Theorem 10.19.）　Let Φ =

System (6) with a linear feedback un = −Szn, where S = (σ1, σ2, σ3) is a

real (1× 3) matrix. Then,

zn+1 = Azn +Bun

= (A−BS)zn.

System (6) is stabilizable if, for each k, there exists matrix S such that

control uk = −Szk achieves lim
k→∞

zk = zk−1. Market stabilization succeeds

if System (6) is stabilizable. I define z∗ = zk−1 and yk = zk−z∗ to describe

System (6) as follows:

yk+1 = A(yk + z∗) +Buk − z∗ = zk+1 − z∗.

Stabilization to an initial state z∗ is equivalent to stabilization to 0. Hence,

the goal of stabilization is zk → 0, without loss of generality. The next

proposition is useful for stabilization.

Proposition 6 (Elaydi (2005), Theorem 10.19.) Let Φ = {φ1, φ2, φ3} be

an arbitrary set of 3 complex numbers such that Φ = {φ̄1, φ̄2, φ̄3} = Φ.

Then, System (6) is controllable if and only if there exists a matrix S such

that the eigenvalues of A−BS are the set Φ.

Thus, System (6) is stabilizable if the eigenvalues of A − BS lie inside the

unit disk. Applying Proposition 6 to System (6), I obtain the following

result.

Proposition 7 Market stabilization succeeds if λ > 0.

Proof. Without loss of generality, I set zk−1 = 0. Let Φ = {φ1, φ2, φ3}
denote the set of complex numbers such that |φi| < 1 for each i = 1, 2, 3. I

define δ1 = −(φ1 +φ2 +φ3), δ2 = φ1φ2 +φ2φ3 +φ3φ1, and δ3 = −φ1φ2φ3.

The characteristic polynomial of A−BS is

det (A−BS − φI) =

∣∣∣∣∣∣∣

1− µσ1 − φ λ− µ+ βµ2 − µσ2 β(λ− µ)µ− µσ3

−σ1 βµ− σ2 − φ β(λ− µ)− σ3

0 1 −φ

∣∣∣∣∣∣∣
= 0,

which is equivalent to

φ3 + (µσ1 + σ2 − βµ− 1)φ2 + ((λ− µ)σ1 − σ2 + σ3 − β(λ− µ) + βµ)φ

− σ3 + β(λ− µ) = 0.

11

be an arbitrary set of 3 
complex numbers such that 

System (6) with a linear feedback un = −Szn, where S = (σ1, σ2, σ3) is a

real (1× 3) matrix. Then,

zn+1 = Azn +Bun

= (A−BS)zn.

System (6) is stabilizable if, for each k, there exists matrix S such that

control uk = −Szk achieves lim
k→∞

zk = zk−1. Market stabilization succeeds

if System (6) is stabilizable. I define z∗ = zk−1 and yk = zk−z∗ to describe

System (6) as follows:

yk+1 = A(yk + z∗) +Buk − z∗ = zk+1 − z∗.

Stabilization to an initial state z∗ is equivalent to stabilization to 0. Hence,

the goal of stabilization is zk → 0, without loss of generality. The next

proposition is useful for stabilization.

Proposition 6 (Elaydi (2005), Theorem 10.19.) Let Φ = {φ1, φ2, φ3} be

an arbitrary set of 3 complex numbers such that Φ = {φ̄1, φ̄2, φ̄3} = Φ.

Then, System (6) is controllable if and only if there exists a matrix S such

that the eigenvalues of A−BS are the set Φ.

Thus, System (6) is stabilizable if the eigenvalues of A − BS lie inside the

unit disk. Applying Proposition 6 to System (6), I obtain the following

result.

Proposition 7 Market stabilization succeeds if λ > 0.

Proof. Without loss of generality, I set zk−1 = 0. Let Φ = {φ1, φ2, φ3}
denote the set of complex numbers such that |φi| < 1 for each i = 1, 2, 3. I

define δ1 = −(φ1 +φ2 +φ3), δ2 = φ1φ2 +φ2φ3 +φ3φ1, and δ3 = −φ1φ2φ3.

The characteristic polynomial of A−BS is

det (A−BS − φI) =

∣∣∣∣∣∣∣

1− µσ1 − φ λ− µ+ βµ2 − µσ2 β(λ− µ)µ− µσ3

−σ1 βµ− σ2 − φ β(λ− µ)− σ3

0 1 −φ

∣∣∣∣∣∣∣
= 0,

which is equivalent to

φ3 + (µσ1 + σ2 − βµ− 1)φ2 + ((λ− µ)σ1 − σ2 + σ3 − β(λ− µ) + βµ)φ

− σ3 + β(λ− µ) = 0.

11

. Then, System (6) is controllable if and only if 
there exists a matrix S such that the eigenvalues of A − BS are the set Φ.

Thus, System （6） is stabilizable if the eigenvalues of A − BS lie inside the unit disk.  Applying 
Proposition 6 to System （6）, I obtain the following result.

Proposition 7　Market stabilization succeeds if λ > 0.
Proof.　Without loss of generality, I set zk－1 = 0. Let

System (6) with a linear feedback un = −Szn, where S = (σ1, σ2, σ3) is a

real (1× 3) matrix. Then,

zn+1 = Azn +Bun

= (A−BS)zn.

System (6) is stabilizable if, for each k, there exists matrix S such that

control uk = −Szk achieves lim
k→∞

zk = zk−1. Market stabilization succeeds

if System (6) is stabilizable. I define z∗ = zk−1 and yk = zk−z∗ to describe

System (6) as follows:

yk+1 = A(yk + z∗) +Buk − z∗ = zk+1 − z∗.

Stabilization to an initial state z∗ is equivalent to stabilization to 0. Hence,

the goal of stabilization is zk → 0, without loss of generality. The next

proposition is useful for stabilization.

Proposition 6 (Elaydi (2005), Theorem 10.19.) Let Φ = {φ1, φ2, φ3} be

an arbitrary set of 3 complex numbers such that Φ = {φ̄1, φ̄2, φ̄3} = Φ.

Then, System (6) is controllable if and only if there exists a matrix S such

that the eigenvalues of A−BS are the set Φ.

Thus, System (6) is stabilizable if the eigenvalues of A − BS lie inside the

unit disk. Applying Proposition 6 to System (6), I obtain the following

result.

Proposition 7 Market stabilization succeeds if λ > 0.

Proof. Without loss of generality, I set zk−1 = 0. Let Φ = {φ1, φ2, φ3}
denote the set of complex numbers such that |φi| < 1 for each i = 1, 2, 3. I

define δ1 = −(φ1 +φ2 +φ3), δ2 = φ1φ2 +φ2φ3 +φ3φ1, and δ3 = −φ1φ2φ3.

The characteristic polynomial of A−BS is

det (A−BS − φI) =

∣∣∣∣∣∣∣

1− µσ1 − φ λ− µ+ βµ2 − µσ2 β(λ− µ)µ− µσ3

−σ1 βµ− σ2 − φ β(λ− µ)− σ3

0 1 −φ

∣∣∣∣∣∣∣
= 0,

which is equivalent to

φ3 + (µσ1 + σ2 − βµ− 1)φ2 + ((λ− µ)σ1 − σ2 + σ3 − β(λ− µ) + βµ)φ

− σ3 + β(λ− µ) = 0.

11

 denote the set of complex 

numbers such that 

System (6) with a linear feedback un = −Szn, where S = (σ1, σ2, σ3) is a

real (1× 3) matrix. Then,

zn+1 = Azn +Bun

= (A−BS)zn.

System (6) is stabilizable if, for each k, there exists matrix S such that

control uk = −Szk achieves lim
k→∞

zk = zk−1. Market stabilization succeeds

if System (6) is stabilizable. I define z∗ = zk−1 and yk = zk−z∗ to describe

System (6) as follows:

yk+1 = A(yk + z∗) +Buk − z∗ = zk+1 − z∗.

Stabilization to an initial state z∗ is equivalent to stabilization to 0. Hence,

the goal of stabilization is zk → 0, without loss of generality. The next

proposition is useful for stabilization.

Proposition 6 (Elaydi (2005), Theorem 10.19.) Let Φ = {φ1, φ2, φ3} be

an arbitrary set of 3 complex numbers such that Φ = {φ̄1, φ̄2, φ̄3} = Φ.

Then, System (6) is controllable if and only if there exists a matrix S such

that the eigenvalues of A−BS are the set Φ.

Thus, System (6) is stabilizable if the eigenvalues of A − BS lie inside the

unit disk. Applying Proposition 6 to System (6), I obtain the following

result.

Proposition 7 Market stabilization succeeds if λ > 0.

Proof. Without loss of generality, I set zk−1 = 0. Let Φ = {φ1, φ2, φ3}
denote the set of complex numbers such that |φi| < 1 for each i = 1, 2, 3. I

define δ1 = −(φ1 +φ2 +φ3), δ2 = φ1φ2 +φ2φ3 +φ3φ1, and δ3 = −φ1φ2φ3.

The characteristic polynomial of A−BS is

det (A−BS − φI) =

∣∣∣∣∣∣∣

1− µσ1 − φ λ− µ+ βµ2 − µσ2 β(λ− µ)µ− µσ3

−σ1 βµ− σ2 − φ β(λ− µ)− σ3

0 1 −φ

∣∣∣∣∣∣∣
= 0,

which is equivalent to

φ3 + (µσ1 + σ2 − βµ− 1)φ2 + ((λ− µ)σ1 − σ2 + σ3 − β(λ− µ) + βµ)φ

− σ3 + β(λ− µ) = 0.

11

 for each i = 1, 2, 3. I define 

System (6) with a linear feedback un = −Szn, where S = (σ1, σ2, σ3) is a

real (1× 3) matrix. Then,

zn+1 = Azn +Bun

= (A−BS)zn.

System (6) is stabilizable if, for each k, there exists matrix S such that

control uk = −Szk achieves lim
k→∞

zk = zk−1. Market stabilization succeeds

if System (6) is stabilizable. I define z∗ = zk−1 and yk = zk−z∗ to describe

System (6) as follows:

yk+1 = A(yk + z∗) +Buk − z∗ = zk+1 − z∗.

Stabilization to an initial state z∗ is equivalent to stabilization to 0. Hence,

the goal of stabilization is zk → 0, without loss of generality. The next

proposition is useful for stabilization.

Proposition 6 (Elaydi (2005), Theorem 10.19.) Let Φ = {φ1, φ2, φ3} be

an arbitrary set of 3 complex numbers such that Φ = {φ̄1, φ̄2, φ̄3} = Φ.

Then, System (6) is controllable if and only if there exists a matrix S such

that the eigenvalues of A−BS are the set Φ.

Thus, System (6) is stabilizable if the eigenvalues of A − BS lie inside the

unit disk. Applying Proposition 6 to System (6), I obtain the following

result.

Proposition 7 Market stabilization succeeds if λ > 0.

Proof. Without loss of generality, I set zk−1 = 0. Let Φ = {φ1, φ2, φ3}
denote the set of complex numbers such that |φi| < 1 for each i = 1, 2, 3. I

define δ1 = −(φ1 +φ2 +φ3), δ2 = φ1φ2 +φ2φ3 +φ3φ1, and δ3 = −φ1φ2φ3.

The characteristic polynomial of A−BS is

det (A−BS − φI) =

∣∣∣∣∣∣∣

1− µσ1 − φ λ− µ+ βµ2 − µσ2 β(λ− µ)µ− µσ3

−σ1 βµ− σ2 − φ β(λ− µ)− σ3

0 1 −φ

∣∣∣∣∣∣∣
= 0,

which is equivalent to

φ3 + (µσ1 + σ2 − βµ− 1)φ2 + ((λ− µ)σ1 − σ2 + σ3 − β(λ− µ) + βµ)φ

− σ3 + β(λ− µ) = 0.

11

, 

System (6) with a linear feedback un = −Szn, where S = (σ1, σ2, σ3) is a

real (1× 3) matrix. Then,

zn+1 = Azn +Bun

= (A−BS)zn.

System (6) is stabilizable if, for each k, there exists matrix S such that

control uk = −Szk achieves lim
k→∞

zk = zk−1. Market stabilization succeeds

if System (6) is stabilizable. I define z∗ = zk−1 and yk = zk−z∗ to describe

System (6) as follows:

yk+1 = A(yk + z∗) +Buk − z∗ = zk+1 − z∗.

Stabilization to an initial state z∗ is equivalent to stabilization to 0. Hence,

the goal of stabilization is zk → 0, without loss of generality. The next

proposition is useful for stabilization.

Proposition 6 (Elaydi (2005), Theorem 10.19.) Let Φ = {φ1, φ2, φ3} be

an arbitrary set of 3 complex numbers such that Φ = {φ̄1, φ̄2, φ̄3} = Φ.

Then, System (6) is controllable if and only if there exists a matrix S such

that the eigenvalues of A−BS are the set Φ.

Thus, System (6) is stabilizable if the eigenvalues of A − BS lie inside the

unit disk. Applying Proposition 6 to System (6), I obtain the following

result.

Proposition 7 Market stabilization succeeds if λ > 0.

Proof. Without loss of generality, I set zk−1 = 0. Let Φ = {φ1, φ2, φ3}
denote the set of complex numbers such that |φi| < 1 for each i = 1, 2, 3. I

define δ1 = −(φ1 +φ2 +φ3), δ2 = φ1φ2 +φ2φ3 +φ3φ1, and δ3 = −φ1φ2φ3.

The characteristic polynomial of A−BS is

det (A−BS − φI) =

∣∣∣∣∣∣∣

1− µσ1 − φ λ− µ+ βµ2 − µσ2 β(λ− µ)µ− µσ3

−σ1 βµ− σ2 − φ β(λ− µ)− σ3

0 1 −φ

∣∣∣∣∣∣∣
= 0,

which is equivalent to

φ3 + (µσ1 + σ2 − βµ− 1)φ2 + ((λ− µ)σ1 − σ2 + σ3 − β(λ− µ) + βµ)φ

− σ3 + β(λ− µ) = 0.

11

System (6) with a linear feedback un = −Szn, where S = (σ1, σ2, σ3) is a

real (1× 3) matrix. Then,

zn+1 = Azn +Bun

= (A−BS)zn.

System (6) is stabilizable if, for each k, there exists matrix S such that

control uk = −Szk achieves lim
k→∞

zk = zk−1. Market stabilization succeeds

if System (6) is stabilizable. I define z∗ = zk−1 and yk = zk−z∗ to describe

System (6) as follows:

yk+1 = A(yk + z∗) +Buk − z∗ = zk+1 − z∗.

Stabilization to an initial state z∗ is equivalent to stabilization to 0. Hence,

the goal of stabilization is zk → 0, without loss of generality. The next

proposition is useful for stabilization.

Proposition 6 (Elaydi (2005), Theorem 10.19.) Let Φ = {φ1, φ2, φ3} be

an arbitrary set of 3 complex numbers such that Φ = {φ̄1, φ̄2, φ̄3} = Φ.

Then, System (6) is controllable if and only if there exists a matrix S such

that the eigenvalues of A−BS are the set Φ.

Thus, System (6) is stabilizable if the eigenvalues of A − BS lie inside the

unit disk. Applying Proposition 6 to System (6), I obtain the following

result.

Proposition 7 Market stabilization succeeds if λ > 0.

Proof. Without loss of generality, I set zk−1 = 0. Let Φ = {φ1, φ2, φ3}
denote the set of complex numbers such that |φi| < 1 for each i = 1, 2, 3. I

define δ1 = −(φ1 +φ2 +φ3), δ2 = φ1φ2 +φ2φ3 +φ3φ1, and δ3 = −φ1φ2φ3.

The characteristic polynomial of A−BS is

det (A−BS − φI) =

∣∣∣∣∣∣∣

1− µσ1 − φ λ− µ+ βµ2 − µσ2 β(λ− µ)µ− µσ3

−σ1 βµ− σ2 − φ β(λ− µ)− σ3

0 1 −φ

∣∣∣∣∣∣∣
= 0,

which is equivalent to

φ3 + (µσ1 + σ2 − βµ− 1)φ2 + ((λ− µ)σ1 − σ2 + σ3 − β(λ− µ) + βµ)φ

− σ3 + β(λ− µ) = 0.

11

, and 

System (6) with a linear feedback un = −Szn, where S = (σ1, σ2, σ3) is a

real (1× 3) matrix. Then,

zn+1 = Azn +Bun

= (A−BS)zn.

System (6) is stabilizable if, for each k, there exists matrix S such that

control uk = −Szk achieves lim
k→∞

zk = zk−1. Market stabilization succeeds

if System (6) is stabilizable. I define z∗ = zk−1 and yk = zk−z∗ to describe

System (6) as follows:

yk+1 = A(yk + z∗) +Buk − z∗ = zk+1 − z∗.

Stabilization to an initial state z∗ is equivalent to stabilization to 0. Hence,

the goal of stabilization is zk → 0, without loss of generality. The next

proposition is useful for stabilization.

Proposition 6 (Elaydi (2005), Theorem 10.19.) Let Φ = {φ1, φ2, φ3} be

an arbitrary set of 3 complex numbers such that Φ = {φ̄1, φ̄2, φ̄3} = Φ.

Then, System (6) is controllable if and only if there exists a matrix S such

that the eigenvalues of A−BS are the set Φ.

Thus, System (6) is stabilizable if the eigenvalues of A − BS lie inside the

unit disk. Applying Proposition 6 to System (6), I obtain the following

result.

Proposition 7 Market stabilization succeeds if λ > 0.

Proof. Without loss of generality, I set zk−1 = 0. Let Φ = {φ1, φ2, φ3}
denote the set of complex numbers such that |φi| < 1 for each i = 1, 2, 3. I

define δ1 = −(φ1 +φ2 +φ3), δ2 = φ1φ2 +φ2φ3 +φ3φ1, and δ3 = −φ1φ2φ3.

The characteristic polynomial of A−BS is

det (A−BS − φI) =

∣∣∣∣∣∣∣

1− µσ1 − φ λ− µ+ βµ2 − µσ2 β(λ− µ)µ− µσ3

−σ1 βµ− σ2 − φ β(λ− µ)− σ3

0 1 −φ

∣∣∣∣∣∣∣
= 0,

which is equivalent to

φ3 + (µσ1 + σ2 − βµ− 1)φ2 + ((λ− µ)σ1 − σ2 + σ3 − β(λ− µ) + βµ)φ

− σ3 + β(λ− µ) = 0.

11

. The characteristic polynomial of A − BS is

System (6) with a linear feedback un = −Szn, where S = (σ1, σ2, σ3) is a

real (1× 3) matrix. Then,

zn+1 = Azn +Bun

= (A−BS)zn.

System (6) is stabilizable if, for each k, there exists matrix S such that

control uk = −Szk achieves lim
k→∞

zk = zk−1. Market stabilization succeeds

if System (6) is stabilizable. I define z∗ = zk−1 and yk = zk−z∗ to describe

System (6) as follows:

yk+1 = A(yk + z∗) +Buk − z∗ = zk+1 − z∗.

Stabilization to an initial state z∗ is equivalent to stabilization to 0. Hence,

the goal of stabilization is zk → 0, without loss of generality. The next

proposition is useful for stabilization.

Proposition 6 (Elaydi (2005), Theorem 10.19.) Let Φ = {φ1, φ2, φ3} be

an arbitrary set of 3 complex numbers such that Φ = {φ̄1, φ̄2, φ̄3} = Φ.

Then, System (6) is controllable if and only if there exists a matrix S such

that the eigenvalues of A−BS are the set Φ.

Thus, System (6) is stabilizable if the eigenvalues of A − BS lie inside the

unit disk. Applying Proposition 6 to System (6), I obtain the following

result.

Proposition 7 Market stabilization succeeds if λ > 0.

Proof. Without loss of generality, I set zk−1 = 0. Let Φ = {φ1, φ2, φ3}
denote the set of complex numbers such that |φi| < 1 for each i = 1, 2, 3. I

define δ1 = −(φ1 +φ2 +φ3), δ2 = φ1φ2 +φ2φ3 +φ3φ1, and δ3 = −φ1φ2φ3.

The characteristic polynomial of A−BS is

det (A−BS − φI) =

∣∣∣∣∣∣∣

1− µσ1 − φ λ− µ+ βµ2 − µσ2 β(λ− µ)µ− µσ3

−σ1 βµ− σ2 − φ β(λ− µ)− σ3

0 1 −φ

∣∣∣∣∣∣∣
= 0,

which is equivalent to

φ3 + (µσ1 + σ2 − βµ− 1)φ2 + ((λ− µ)σ1 − σ2 + σ3 − β(λ− µ) + βµ)φ

− σ3 + β(λ− µ) = 0.

11

which is equivalent to

System (6) with a linear feedback un = −Szn, where S = (σ1, σ2, σ3) is a

real (1× 3) matrix. Then,

zn+1 = Azn +Bun

= (A−BS)zn.

System (6) is stabilizable if, for each k, there exists matrix S such that

control uk = −Szk achieves lim
k→∞

zk = zk−1. Market stabilization succeeds

if System (6) is stabilizable. I define z∗ = zk−1 and yk = zk−z∗ to describe

System (6) as follows:

yk+1 = A(yk + z∗) +Buk − z∗ = zk+1 − z∗.

Stabilization to an initial state z∗ is equivalent to stabilization to 0. Hence,

the goal of stabilization is zk → 0, without loss of generality. The next

proposition is useful for stabilization.

Proposition 6 (Elaydi (2005), Theorem 10.19.) Let Φ = {φ1, φ2, φ3} be

an arbitrary set of 3 complex numbers such that Φ = {φ̄1, φ̄2, φ̄3} = Φ.

Then, System (6) is controllable if and only if there exists a matrix S such

that the eigenvalues of A−BS are the set Φ.

Thus, System (6) is stabilizable if the eigenvalues of A − BS lie inside the

unit disk. Applying Proposition 6 to System (6), I obtain the following

result.

Proposition 7 Market stabilization succeeds if λ > 0.

Proof. Without loss of generality, I set zk−1 = 0. Let Φ = {φ1, φ2, φ3}
denote the set of complex numbers such that |φi| < 1 for each i = 1, 2, 3. I

define δ1 = −(φ1 +φ2 +φ3), δ2 = φ1φ2 +φ2φ3 +φ3φ1, and δ3 = −φ1φ2φ3.

The characteristic polynomial of A−BS is

det (A−BS − φI) =

∣∣∣∣∣∣∣

1− µσ1 − φ λ− µ+ βµ2 − µσ2 β(λ− µ)µ− µσ3

−σ1 βµ− σ2 − φ β(λ− µ)− σ3

0 1 −φ

∣∣∣∣∣∣∣
= 0,

which is equivalent to

φ3 + (µσ1 + σ2 − βµ− 1)φ2 + ((λ− µ)σ1 − σ2 + σ3 − β(λ− µ) + βµ)φ

− σ3 + β(λ− µ) = 0.

11

Comparing the coefficients with the roots, I obtain



（ 261 ）A Model of Financial Market Control（Ohashi）

− 244 − − 245 −

 （8）

These equations yield

Comparing the coefficients with the roots, I obtain

µσ1 + σ2 − βµ− 1 = δ1

(λ− µ)σ1 − σ2 + σ3 − β(λ− µ) + βµ = δ2

−σ3 + β(λ− µ) = δ3.

(8)

These equations yield

S = (σ1, σ2, σ3)

=

(
1 + δ1 + δ2 + δ3

λ
,
−µ(1 + δ1 + δ2 + δ3)

λ
+ δ1 + βµ+ 1, − δ3 + β(λ− µ)

)
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Because |φi| < 1 for each i, the controller makes the state (pn, qn, qn−1)

converge to (0, 0, 0) by placing the orders followed by uk = −Szk. ■

Let U denote the set of matrixes, S in Eq. (9), such that the maximum

absolute value of eigenvalues of matrix A−BS is less than 1.

Definition 4 A quick response control is a control such that if there exists

S = (σ1, σ2, σ3) ∈ U such that for each k ≧ 1,
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• qk ̸= 0 ⇒ ∀n ≧ k + 1 un = −Szn = −σ1pn−1 − σ2qn−1 − σ3qn−2.

In other words, a quick response control is a control such that (i) it achieves

market stabilization and (ii) the controller enters the market only if the

speculator trades; otherwise, the controller never enters the market (i.e.,

no market intervention occurs). The market is said to be SPE-viable un-

der quick response controls if, for each (λ, µ) ∈ R2
++, there exists a quick

response control such that no trade is a unique SPE outcome.

Theorem 1 The market is SPE-viable under quick response controls if and

only if (λ, µ) ∈ M .

Proof. I assume that p0 = 0 for simplicity.

Suppose that (λ, µ) ∈ M . I first show that there is a quick response

control that makes the market SPE-viable. Let Φ = {1/3, 1/3, 1/3}. Then,

by Eq. (9), I have
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Let Γ（x） denote a subgame such that a speculator n chooses xn = （x, −x） and each speculator i < n 
chooses xi = （0, 0）. Suppose that speculator 1 implements x1 = （1, −1）. Then, u2 = −βµ and  
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3
− ξ3

p3 = µ

(
x13 −

1

3

)
+ (λ− µ)x12.

If x12 ̸= 0, a simple calculation yields
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(
(λ− 2µ)x12 + µx13 − λ+

2µ

3

)
x12
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µ
(
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3

)
< 0 if x12 = 1

µ
(
−x13 − 8

3

)
+ 2λ if x12 = −1.
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have

p2 − p1 = (λ− 2µ)− µ(1 + δ1) ≦ 0. (10)

Eq. (10) is equivalent to

λ− 2µ

µ
− 1 ≦ δ1 < 3,

which is impossible for a sufficiently small µ > 0. ■
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Ⅴ．Concluding remarks

This study models a trading system as a linear system and introduces a control to the system. The 
control affirms the prevention of “momentum ignition” price manipulation （MIPM）. The 
controllability result of the linear model is applicable to other financial policies, such as inflation 
targeting, the stabilization of price bubbles, and the prevention of herding during a market crash. 
The implication of this study is that it is important for the controllability of the market to check 
whether the observed price impacts in practice are linear or not.

The main finding of this study is that Huberman and Stanzl’s （2004） benchmark result is 
achievable with an appropriate control, while it is never achievable without controls. The market 
intervention of the model, which is identical to a control, never destabilizes the market given a 
strategy profile of speculators.

The main assumption of this study （Assumption 1） is important to the affirmative result on the 
prevention of MIPM. For the restriction of speculators’ action spaces, the model suggests that the 
result is valid under a more general class of strategies. I briefly state my conjecture. For a strategy 
profile s that generates a sequence of active speculators’ aggregate quantity,（yn）, the controller can 
set a control （u′n） such that 
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affirmative result on the prevention of MIPM. For the restriction of spec-

ulators’ action spaces, the model suggests that the result is valid under a

more general class of strategies. I briefly state my conjecture. For a strategy

profile s that generates a sequence of active speculators’ aggregate quantity,

(yn), the controller can set a control (u′n) such that un = u′n+1−yn+1 = un+1

in Eq. (7). Hence, the result still affirms the prevention of MIPM. Mean-

while, the simplicity of momentum traders’ behavior and time-independent

pricing rules are controversial.

Finally, my model has certain limitations: there are no stochastic terms,

long-lived speculators, or budget constraints of the controller. In particular,

we should consider the controller’s budget constraints more seriously. Since

the controller’s purchase (or sale) continues infinitely for market stability, it

is important to show that the required budget is bounded. These topics are

left for future research.

Appendix

A Second-order linear difference equation

A difference equation appearing in the model is defined by

qn+2 = Kqn+1 + Jqn, (A.11)

where K, J ∈ R and n ∈ N. The characteristic equation of Eq. (A.11) is

r2 −Kr − J = 0. (A.12)

Suppose that Eq. (A.12) has distinct characteristic roots, say r1 and r2.
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Then, a sequence (qn) described as qn = c1r
n
1 + c2r

n
2 is the solution of

Eq. (A.11) because

qn+2 −Kqn+1 − Jqn

= c1r
n+2
1 + c2r

n+2
2 −K(c1r

n+1
1 + c2r

n+1
2 )− J(c1r

n
1 + c2r

n
2 )

= c1r
n
1 (r

2
1 −Kr1 − J) + c2r

n
2 (r

2
2 −Kr2 − J)

= 0.

(A.13)

This solution is uniquely determined by an initial value of Eq. (A.11). If

(q0, q1) = (0, 1), then c1 and c2 are determined uniquely as

(
1 1

r1 r2

)(
c1

c2

)
=

(
0

1

)
.

If the roots of Eq. (A.12) are real numbers, then

r1 =
K +

√
D

2
, r2 =

K −
√
D

2
, (A.14)

where D = K2 + 4J > 0. Hence, c1 = 1/
√
D, c2 = −1/

√
D, and

qn =
1√
D
(rn1 − rn2 ). (A.15)

If the roots of Eq. (A.12) are complex numbers, then

r1 =
K + i

√
D′

2
, r2 =

K − i
√
D′

2
, (A.16)

where D′ = −D > 0 and i =
√
−1. Then, qn = (rn1 −rn2 )/(i

√
D′). Note that

D < 0 implies J < 0. In the polar form, r1 = (K + i
√
D′)/2 =

√
−J(cos θ+

i sin θ) with some θ ∈ [0, 2π].5 Using Euler’s formula, r1 =
√
−Jeiθ and

r2 = r1 = (K − i
√
D′)/2 =

√
−Je−iθ. Using De Moivre’s theorem, qn is

described as

qn =
2√
D′

(√
−J

)n
sin(nθ). (A.17)

Suppose that Eq. (A.12) has the same characteristic root. Then, D = 0

and r = K/2. In this case, a sequence (qn), described as qn = rn(c1 + nc2),

is the solution of Eq. (A.11). If (q0, q1) = (0, 1), then (c1, c2) = (0, 2/K).

5Suppose that r1 = α + iβ and r2 = α − iβ. In polar coordinates, α = r cos θ, β =
r sin θ, r =

√
α2 + β2, and θ = tan−1( β

α
).
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1.　Analyses of the model
Suppose that all speculators implement x = （1, −1） （the argument is symmetric for the case −x if 

p0 is sufficiently large）. Then, the market orders are q0 = 0, q1 = 1, and
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1 Analyses of the model

Suppose that all speculators implement x = (1,−1) (the argument is sym-

metric for the case −x if p0 is sufficiently large). Then, the market orders

are q0 = 0, q1 = 1, and

qn = βµqn−1 + β(λ− µ)qn−2. (A.19)

for each n ≧ 2. Let K = βµ, J = β(λ− µ), and D = K2 + 4J .

Lemma 1 If (λ, µ) satisfies D ≧ 0, then the sequence of the market price,

(pn), is monotone increasing.
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The assumption D > 0 implies β > 0, K > 0, and r1 > 0. Then, |r1|2 −
|r2|2 = K

√
D > 0, which implies |r1| > |r2| and qn > 0 for each n ∈ N.

Suppose that D = 0. By Eq. (A.18), qn = n(βµ2 )n−1. If β > 0, then qn > 0

for each n ∈ N. By Eq. (3), pn = pn−1 + λqn−1 + µ(qn − qn−1) > pn−1. ■

For market viability, D < 0 is necessary. Eq. (A.17) implies that the

sequence (qn) oscillates and there exist infinitely many n such that qn < 0.

B Theorem 10. 4. of Elaydi (2005)

Consider the following difference equation system:

zn+1 = Azn +Bun, (A.20)

where z is a k-dimensional vector, A is a (k × k)-matrix, B is a (k × m)-

matrix, and u is an m-dimensional vector, where m ≦ k. The controllability

matrix W of System (A.20) is defined as the k × km-matrix

W = [B,AB,A2B, . . . , Ak−1B].
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k × km-matrix

W = [B, AB, A2B, . . . , Ak － 1B].

Theorem 10. 4. of Elaydi （2005） states that System （A.20） is controllable if and only if rank W = k. 
In the present model, k = 3 and m = 1.

　C　Proof of Propositions　

1.　Proof of Proposition 3
Suppose that D ≧ 0. Then, Lemma 1 implies that each speculator n implementing xn=（1, −1） 
constitutes an NE, which is a contradiction.

2.　Proof of Proposition 4
I prove this proposition by showing the first trading speculator’s optimal choice is no trade in any 

SPE. Let Γ（x） denote the subgame beginning at a history such that a speculator n chooses xn =  
（x, −x） and each speculator i < n chooses xi = （0, 0）.

Consider an arbitrary strategy profile s such that x1 = （1, −1）. Then, speculator 1’s payoff in Γ（1） 
is
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i < n chooses xi = (0, 0).

Consider an arbitrary strategy profile s such that x1 = (1,−1). Then,

speculator 1’s payoff in Γ(1) is

π1(s | 1) = µ(βµ+ x12 − 1) + (λ− µ).

Speculator 2’s payoff in Γ(1) is

π2(s | 1) =



µξ3 + (λ− µ)ξ2 + µy3 + (λ− µ)y2 if x2 ̸= (0, 0)

0 if x2 = (0, 0),

where ξ2 = βµ, ξ3 = (βµ)2+(y2−1)βµ+βλ, y2 = −1+x12, and y3 = x13−x12.

Then, we have

µξ3 + (λ− µ)ξ2 = βµ(βµ2 + (x12 − 3)µ+ 2λ)

and

µy3 + (λ− µ)y2 = µ(x13 − x12) + (λ− µ)(−1 + x12).

I calculate π1(s | 1) and π2(s | 1).

• If x2 = (1,−1), then

π1(s | 1) = βµ2 − µ+ λ

π2(s | 1) = βµ(βµ2 − 2µ+ 2λ) + µ(x13 − 1).
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• If x2 = （1, −1）, then
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• If x2 = （0, 0）, then
• If x2 = (0, 0), then

π1(s | 1) = βµ2 − 2µ+ λ

π2(s | 1) = 0.

• If x2 = (−1, 1), then

π1(s | 1) = βµ2 − 3µ+ λ

π2(s | 1) = βµ(βµ2 − 4µ+ 2λ) + µ(x13 + 1)− 2(λ− µ).

I further calculate π2(s | 1).

• If x3 = (1,−1), then

π2(s | 1) =




βµ(βµ2 − 2µ+ 2λ) if x2 = (1,−1)

0 if x2 = (0, 0)

βµ(βµ2 − 4µ+ 2λ) + 4µ− 2λ if x2 = (−1, 1).

(A.21)

• If x3 = (0, 0), then

π2(s | 1) =




βµ(βµ2 − 2µ+ 2λ)− µ if x2 = (1,−1)

0 if x2 = (0, 0)

βµ(βµ2 − 4µ+ 2λ) + 3µ− 2λ if x2 = (−1, 1).

(A.22)

• If x3 = (−1, 1), then

π2(s | 1) =




βµ(βµ2 − 2µ+ 2λ)− 2µ if x2 = (1,−1)

0 if x2 = (0, 0)

βµ(βµ2 − 4µ+ 2λ) + 2µ− 2λ if x2 = (−1, 1).

(A.23)

These observations show that speculator 2 never chooses x2 = (1,−1) if

L = βµ2 − 2µ + 2λ < 0. In this case, maxπ1(s | 1) = βµ2 − 2µ + λ < 0.

The argument is symmetric for the case of x1 = (−1, 1): speculator 2 never

chooses x2 = (−1, 1) in Γ(−1) and speculator 1’s maximum payoff in Γ(−1)

is negative. The optimal choice of speculator 1 is, therefore, no trade: x1 =

(0, 0). This argument is applicable recursively: if L < 0, each speculator n

in the subgames Γ(1) and Γ(−1) gains a negative payoff, given speculator

n+1’s optimal actions, regardless of the other speculators’ strategy profiles

in Γ(1) and Γ(−1). Any SPE must have this property. This argument
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These observations show that speculator 2 never chooses x2 = （1, −1） if .  
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L = βµ2 − 2µ + 2λ < 0. In this case, maxπ1(s | 1) = βµ2 − 2µ + λ < 0.

The argument is symmetric for the case of x1 = (−1, 1): speculator 2 never

chooses x2 = (−1, 1) in Γ(−1) and speculator 1’s maximum payoff in Γ(−1)

is negative. The optimal choice of speculator 1 is, therefore, no trade: x1 =

(0, 0). This argument is applicable recursively: if L < 0, each speculator n

in the subgames Γ(1) and Γ(−1) gains a negative payoff, given speculator

n+1’s optimal actions, regardless of the other speculators’ strategy profiles

in Γ(1) and Γ(−1). Any SPE must have this property. This argument
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. The argument is symmetric for the case of  
x1 = （−1, 1）: speculator 2 never chooses x2 = （−1, 1） in Γ（−1） and speculator 1’s maximum payoff in 
Γ（−1） is negative. The optimal choice of speculator 1 is, therefore, no trade: x1 = （0, 0）. This 
argument is applicable recursively: if L < 0, each speculator n in the subgames Γ（1） and Γ（−1） 
gains a negative payoff, given speculator n + 1’s optimal actions, regardless of the other speculators’ 
strategy profiles in Γ（1） and Γ（−1）.  Any SPE must have this property.  This argument also shows 
that, if L < 0, there is an SPE in which speculator 1 chooses x1 = （0, 0） and speculator n + 1 chooses 
xn+1 = （0, 0） in Γ（0）, for each n ≧ 1. ■

The converse of Proposition 4 is not true. Obviously, if 

also shows that, if L < 0, there is an SPE in which speculator 1 chooses

x1 = (0, 0) and speculator n + 1 chooses xn+1 = (0, 0) in Γ(0), for each

n ≧ 1. ■
The converse of Proposition 4 is not true. Obviously, if λ = µ = 0,

market prices never change. Hence, no trade occurs in any SPE. Even if

λµ ̸= 0, when L = 0, the bottom row of Eq. (A.21) is −2(βµ2− 2µ+λ) > 0.

Furthermore, Eqs. (A.22) and (A.23) show that speculator 2 never chooses

x2 = (1,−1) in Γ(1). By continuity, no trade occurs in an SPE for some

(λ, µ) such that L ≧ 0.
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• If x2 = (0, 0), then

π1(s | 1) = βµ2 − 2µ+ λ

π2(s | 1) = 0.

• If x2 = (−1, 1), then

π1(s | 1) = βµ2 − 3µ+ λ

π2(s | 1) = βµ(βµ2 − 4µ+ 2λ) + µ(x13 + 1)− 2(λ− µ).

I further calculate π2(s | 1).

• If x3 = (1,−1), then

π2(s | 1) =





βµ(βµ2 − 2µ+ 2λ) if x2 = (1,−1)

0 if x2 = (0, 0)

βµ(βµ2 − 4µ+ 2λ) + 4µ− 2λ if x2 = (−1, 1).

(A.21)

• If x3 = (0, 0), then

π2(s | 1) =





βµ(βµ2 − 2µ+ 2λ)− µ if x2 = (1,−1)

0 if x2 = (0, 0)

βµ(βµ2 − 4µ+ 2λ) + 3µ− 2λ if x2 = (−1, 1).

(A.22)

• If x3 = (−1, 1), then

π2(s | 1) =





βµ(βµ2 − 2µ+ 2λ)− 2µ if x2 = (1,−1)

0 if x2 = (0, 0)

βµ(βµ2 − 4µ+ 2λ) + 2µ− 2λ if x2 = (−1, 1).

(A.23)

These observations show that speculator 2 never chooses x2 = (1,−1) if

L = βµ2 − 2µ + 2λ < 0. In this case, maxπ1(s | 1) = βµ2 − 2µ + λ < 0.

The argument is symmetric for the case of x1 = (−1, 1): speculator 2 never

chooses x2 = (−1, 1) in Γ(−1) and speculator 1’s maximum payoff in Γ(−1)

is negative. The optimal choice of speculator 1 is, therefore, no trade: x1 =

(0, 0). This argument is applicable recursively: if L < 0, each speculator n

in the subgames Γ(1) and Γ(−1) gains a negative payoff, given speculator

n+1’s optimal actions, regardless of the other speculators’ strategy profiles

in Γ(1) and Γ(−1). Any SPE must have this property. This argument
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also shows that, if L < 0, there is an SPE in which speculator 1 chooses

x1 = (0, 0) and speculator n + 1 chooses xn+1 = (0, 0) in Γ(0), for each

n ≧ 1. ■
The converse of Proposition 4 is not true. Obviously, if λ = µ = 0,

market prices never change. Hence, no trade occurs in any SPE. Even if

λµ ̸= 0, when L = 0, the bottom row of Eq. (A.21) is −2(βµ2− 2µ+λ) > 0.

Furthermore, Eqs. (A.22) and (A.23) show that speculator 2 never chooses

x2 = (1,−1) in Γ(1). By continuity, no trade occurs in an SPE for some

(λ, µ) such that L ≧ 0.
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