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ABSTRACT

We investigate some uncertainty relations for generalized quasi-metric adjusted skew informa-
tions. We give generalized Heisenbrg type or generalized Schrédinger type uncertainty relations.
And we obtain several important norm inequalities which refine the triangle inequality and Hlawka
inequality and so on in order to formulate sum types of uncertainty relations for N not necessarily
hermitian quantum mechanical observables. As applications we have some norm inequalities. At

last we state uncertainty relations for quantum channels.

1. INTRODUCTION

Let M, (C) be a set of all n x n complex matrices, M,, 5,(C) be a set of all n x n self-adjoint
matrices, M, +(C) be a set of all n x n positive semi-definite matrices and M,, 1 1(C) be a set of all
nxn density matrices. That is M, + 1(C) = {p € M,,(C)|Tr[p] = 1,p > 0}. Let (A, B) = Tr[A*B|
be a Hilbert-Schmidt scalar product. For p € M, 4 1(C) and A, B € M, 4 (C), an expectation
of A under physical state p is given by E,(A) = Tr[pA] and a variance is given by V,(4) =
Tr[pA3] where Ag = A — Tr[pA]l. For A,B € M, 54(C), p € M, 4 1(C), the famous Heisenberg

uncertainty relation ([16]) is given by
1
Vo(A) - Vp(B) = 4| Tr(p[A, B]IJ?,
where [A, B] = AB — BA. And also the Schrédinger uncertainty relation ([24]) is given by

Vi(A) - Vo(B) ~ [Re{Tr[pAoBo}? > {TrlplA, B,
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which is a refinement of Heisenberg uncertainty relation. The Wigner-Yanase skew information is
defined by
1 .

I,(A) = §TT[(1[P1/27A0])2] = Tr[pAg] — Tr[p"* Agp'/* Ao],

which is smaller than V,(A). And the related value is defined by
1

Jo(A) = 5Trlp{Ao, Bo}?] = TrlpAG] + Trip'/? Agp'/? Ao],

where {A, B} = AB + BA. Now we define
UP(A) = Ip(A) ’ ‘]P(A)'

It is clear that 0 < I,(A) < U,(A) < V,(A). For A, B € M,, so(C), p € My, 4 1(C), the uncertainty
relation for Wigner-Yanase skew information ([21]) is given by
Up(4) - Uy(B) > {|TrlplA, B
After then the Wigner-Yanase-Dyson skew information is defined by
Ly a(A) = STr(El6°, A i1, o)) = TrlpA3) — Tr{p® Aop~* Ao),
where 0 < o < 1. And the related value is defined by
Toa(A) = STrl{", A0}, Ao}] = Tr{pAZ] + Tr{p* o'~ o]

Now we define

Upa(Ad) = /1.0l A) - JpalA).
It is clear that
0 < 1pa(A) < I(A) SUp(A), 0<1pa(A) <Upa(d) <Uy(A).
For A,B € M, 5,(C), p € M, 4+1(C), the uncertainty relation for Wigner-Yanase-Dyson skew
information ([27]) is given by
Up.a(A) - Upa(B) 2 o1 — a)|Tr[p[A, B]]|*.

Hansen ([15]) defined the following metric adjusted skew information. Let §op, = {f : (0,00) —
(0,00)|f(1) =1, zf(2~") = f(x), [ is operator monotone} and let F,, = {f € Fop|f(0) # 0} and

S0, = {f € Fopl £(0) = 0}, where f(0) = lim, o f(x). Then it is clear that §,, = §,, U Ty, We
define

; 1 f(0)
fla)==|(z+1)—(z—-1)22=<|, z>0, feF.
@)= |@+ D) - @~
The correspondence f — f is a bijection between §y,, and §y,. The examples of §,, are as follows.
2z z—1 z+1
frip(z) = Py fern(z) = Togz’ fsLp(z) = 5
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2x

fsup(e) = =

» fwy (@) = <\/§2—’—1>27 fwy (x) =V,

(z —1)°
o — 1)(‘7;17(1 _

fwyp(x) = a(l - Ol)( 1), (O (O, 1),

fWYD(z) = %{x +1-— (SCa — 1)(12170[ — ].)}

Then there are the following relationships among the above examples.

2 -1 VZ+1\? z+1
< e 1
] \/5<10g$<fWYD<< 3 ) < (z#1)

In Kubo-Ando theory of matrix means one associates a mean to each operator monotone function
f € §op by the formula

my(A,B) = A2 f(AT/2PBATY?) A2,
where A,B € M, +(C). Now the monotone metrics(also said quantum Fisher informations) is
defined by

<A7 B>f = TT[A ’ mf(LP’ Rﬂ)il(B)]a

where L,(A) = pA,R,(A) = Ap, A, B € M), 54(C). The metric adjusted skew information I,f(A)
is defined as follows. Let

Corrg(A, B) =Tr[pAoBy] — TT[AOm];(Lp, R,)By),

I,‘f(A) = C’orrg(A, A) = Tr[pAd] - Tr[Aoms(Ly, Rp)Ao).

And the related value is defined by

J1(A) = Tr{pA3) + Tr[Aom (L, R,) Ao).

Now we define
US(A) =T} (A) - T} (A).

It is clear that

0 < IJ(A) S UJ(A) <V, (A).
For A,B € M, s,(C),p € M,, +1(C) and f € §", the Schrodinger type uncertainty relation for
metric adjusted skew information ([29]) is given by

f f ! 2

IJ(A)-I)(B) > \Corrp(A,B)\ .

r+1

2
relation for metric adjusted skew information ([29]) is given by

On the other hand under the condition + f (x) > 2f(x), the Heisenbeg type uncertainty

(1) US(A)-UJ(B) = f(0)|Tr[p[A, B]]|*.
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(2) UJ(A)-UJ(B) > 4f(0)|Corr] (A, B)|*.

Furthermore we define the generalized metric adjusted skew information as follows. Let g, f € §y,

satisfy

(z —1)?
1.1 glz) >k
(1) @) 2 ks
for some k > 0. We define

(z—1)*

Al(x) = g(x) — k

€ Sop-

f(z)
When f(x) > 0 on (0,00), the followings are equaivalent ([17]).

(1) f(z) is operator monotone,

is operator monotone,

f(z)

(3) (x — 1) f(x) is operator convex,

is operator convex.

f(x)

Then since f(z) > 0 on (0,00), _k(xf?;))z

concave, Ag (x) is operator concave. Since Ag(:c) > 0 on (0,00), Ag(:c) is operator monotone. The

is operator concave. And also since g(z) is operator

generalized metric adjusted skew iformation I,(,g ) (A) is defined as follows. Let
CorriD (A, B) = klilp, Ao, ilp, Bo])s
= TT[AOmg(Lp,Rp)BQ} — TT[AOmAg (L/J7Rp)BO]7
I99(A) = Corr(#1(A, A)
= TT‘[Ang(Lp,Rp)AQ] 7TT’[AOmA£(Lp,Rp)A0].
And the related value is defined by
TSP (A) = TrlAgmy(Ly, Ry) Ao] + Tr[Aomys (L, R,) Ao)-

Now we define

UD(A) = V10D (4) - I (4).
For A,B € M, s,(C), p € M, +1(C), the Schrédinger type uncertainty relation for generalized

metric adjusted skew information ([31]) is given by

| ’ , 2
1490(A) - 1897(B) > |Corrle) (A, B) .
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On the other hand under the condition g(z) + Af(x) > £f(x) for some ¢ > 0, the Heisenberg type

uncertainty relation for generalized metric adjusted skew information ([31]) is given by
»f of 2
U D(A) - U (B) = ke Tr[pl A, B]).

In this paper we give the Schrodinger/Heisenberg type uncertainty relation for generalized quasi-
metric adjusted skew information. In section 2, we define generalized quasi-metric adjusted skew
information and state the theorem. And as application we give the new inequalities for fidelity
and trace distance. In section 3, we propose the sum type of uncertainty relation for generalized
quasi-metric adjusted skew information by extending the norm inequalities. In section 4, we state

the uncertainty relations for quantum channels.

2. UNCERTAINTY RELATION FOR GENERALIZED QUASI-METRIC ADJUSTED SKEW
INFORMATION

Definition 2.1. For X,Y € M,,(C) and A, B € M,, +(C), we define the following quantities:
(1) TYD(X,Y) = k((La — Rp)X, (La — Rp)Y);

= KTr[X*(La — Rp)my(La, Rp)~ (Lo — Rp)Y]

=Tr(X*mg(La, Rp)Y] — Tr[X*myys(La, RB)Y],
(2) 194 () = T3 (X, X),

(3) UL (X,Y) = Tr[X*my(La, Rp)Y]+ Tr[X*my, (La, Rp)Y],

@) I (x) =P (x. x),

(5) U 0 = 18 () - 78 (x).

The quantity 11(49’ ’é)(X ) and Fff”é) (X,Y) are said generalized quasi-metric adjusted skew informa-

tion and generalized quasi-metric adjusted correlation measure, respectively.

Theorem 2.2 (Schrédinger type, [35]). For f € &7, ), it holds

(
op’

: 1 , : ’
1§ ) - 1590 = TfR P > £ (10 +v) -1 e -v))

where X, Y € M, (C) and A,B € M, +(C).
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Theorem 2.3 (Heisenberg type, [35]). For f € §7,, if

(2.1) g(z) + AJ(z) = €f (z)

for some £ > 0, then

(1) USSP () - USD (V) = k| Tr[X*|La — Rp|Y]P,

, Deyy = TO G
@) vl o) -ui o) = v,

where X, Y € M,,(C) and A,B € M, 4+(C).

We assume that

ozt B (x —1)2
o) =5 o) =ati- )

Then since (1.1), (2.1) are satisfied, we have the following trace inequality by putting X =Y =T

O ,_ o

k==

in Theorem 2.3.

a(l —a)(Tr[|La — Rp|I])?
2 2
< (;TT[A 4 B]) - (;Tr[A“Bl_a + A““B“])

Since

Tr(|La—Rp|ll=> > [N — p;l[{@sle)],

i=1 j=1
we have

2T7T[A*B'"*] = Tr[A+ B — |L — Rp|I]

= DD 2 = = = )@l = 0.

i=1 j=1

Then we give the following trace inequality.

1
g TrlA+ B —|La— Rp|l) < Tr(A"B'~].

Theorem 2.4 ([33]). We have the following:

1
_ _ _ < i l—o po
2TT[A+B |La — Rp|]] _oglgfngT[A B

< Tr[AY?B'Y?) <

1
< §TT[AaBlfo¢ —|—A17QBO(]

IN

\/<;TT[A + B]) —a(l—a) (Tr]|La — Rp|I))°.
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Remark 2.5. We have three remarks.
(1) There is no relationship between Tr[|La — Rp|I] and Tr[|A — B|]. Because if

(1) e(30)

then Tr(|La — Rp|I) = 3, Tr(J]A — B|) = V10.
On the other hand if

then Tr(|Ls — Rp|I) =8, Tr(|]A — B|) = V/58.

(2) Theorem 2.4 is a generalization of the following result by Powers-Stérmer [23] and Audenaert

et [1]:

1Tr[A +B—|A-B|| < inf Tr[A*”*B°
2 0<a<1
1 /1 2
< Tr[AY?BY?) < (2Tr[A+B]) - (QTT[A—B]) .

(3) When A, B € M 4 1(C), we can prove

Tr||La — Rp|I) < Tr[|A - BJ].

When n > 3, it is a conjecture.

Theorem 2.6 ([33]).

[|A1/231/2|]_1+1\ﬁ [A]+1_\F/)T\Oﬁ( rlA+ B — A—B]),

where \g is the largest eigenvalue of B~Y/2AB~1/2,

3. SuM TYPE UNCERTAINTY RELATION

Theorem 3.1 ([36]). For X,Y € M, (C), A, B € M, +(C), we have the following.

1
W) 19X + 1T (V) 2 S max{I05 (X + V), 1T (X - V).

@) 19D () + 18D (V) = max{ /1) (x +v), /10D (x - v)}.
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Theorem 3.2 ([36]). For {X;}},,{Y;}}L, € M,(C), A, B € M,, (C), we assume that X |L —
Rp|Y; = 6;;C and Condition (2.1) is satisfied. Then (1) and (2) hold.

N N
(1) (Z U%)(Xi)) (Z Ug{gm) > N Tr(C]]%.

N N
(2) <Z \/W) (Z Uég,ﬁ)(Yj)) > NVEIT ().

Theorem 3.3 ([36]). For {X;}, € M,,(C), A, B € M,, +(C), we put

Xt =190+ xp), x =190 (X - X)),

N
Yy =19Px), z=180 0" X)),
=1

3

Then (1), (2) and (3) hold.

N
(1) > 1¢(x)
=1
1
> 53 199 (X + X;) - o 19D (X1 X,
1<i<j<N i<y
Y N
@ 2 VI 2 SP0G+x) - \|180 (Z}@-)
= 1< i=1
! (0:1) 1 N
9, f
2 o SV ) 2w g | SVET - V7
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Lemma 3.4. Let || - || be the Hilbert-Schmidt norm on M, (C). For {A;}Y., C M, (C), we
put

N N
U= llall, W= Al
i=1 i=1

1 _ 1
V= ﬁZHAi‘*‘AJ‘H, V™ = ﬁZ”Ai_Ajn'

i<j 1<j
Then the followings hold.
(HYW<VTt<U
2) W+ (N—-2)U>(N-1)V*+
N -1 1 N -1 1
+ _ >Vt > + _

(3)N72V N—2W_V _maX{N2V NQU’W}

N
41D AP+ (N -2) ZIIA 1= 114 + A7

=1 1<J

IN

> lAi = Al + (V)2

i<j

N
5) > Al
i=1

1 2 —\2
AV )

v

N
6) > llAill?
i=1

Theorem 3.5 (Reverse Inequality of Sum Type Uncertainty Relation, [36]).

(1)

=1
1/2
f ;
5 i I
= N—1Z L (X + X5) (9.1) (q D (9.f)
< VIVD )19 () £ RefT P (X, X))}
(2)
N
S
=1
Iffg)(Xi + Xj) .

X;) £ Re{T'{") (X:, X;)}

i<J

< 3 \/ 19D (x1e (x
N-1 \/ 1 (x) 1) (x
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Finally we give the sum type of uncertainty relation for entropy.

Theorem 3.6. Let P = (p1,p2,...,pNn) and Q = (¢1,q2, .- .,qn) be two probability distributions.
Then the entropies H(P) and H(Q) have the following uncertainty relation.

H(P)+ H(Q) =2(1— maX{Zpi qu})

Proof. By Corollary 2.4 in [37], we get

N N
Z 2p;(1 — ps) < H(P) < Z 1—p?
= ltp =l '
Then we have
N N
2pi(1 —pi) 2¢;(1 — g5)
HPP)+H@Q) > > +y =
pt 14 p; = 1+gq;
N N
> sz‘(l —pi) + qu(l - qj)
i—1 J=1
N N
S S
i—1 i=1
N N
> 201 —max{> p},> ¢}
=1 =1

4. GENERALIZED QUASI-METRIC ADJUSTED SKEW INFORMATION BASED UNCERTAINTY
RELATIONS FOR QUANTUM CHANNELS

For a quantum state p € M, + 1(C) and an arbitrary quantum channel ® with Kraus represen-
tation ®(p) =) . K;pK;, the coherence of quantum state p with respect ro the general quantum
channel ® is defined by

I(p,®) =Y I\%(K)).

From the definition of I(p,®), we see that it depends on both the quantum state and the

quantum channel, and characterizes some intrinsic feature of the state-channel interaction. Let
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p= Z Ajloi)(@;] be a spectral decomposition. Then

I(p, (I)) = ZZ(mg(/\ijk) _mAg(Ajv)‘k))|<¢j|Ki|¢k>|2
i j,,k

= D (mg(N ) — mas (g M) (651 Kl o) .
i jtk

We state sum type uncertainty relation for general quantum channels.

Theorem 4.1. Let ® and U be two quantum channels with Krause representaions ®(p) = >, E;pE},
U(p) = > i, LipLy, respectively. Then

I(p,®) + I(p, V)

1 n
> max > Y max{I{%) (B; + Lu)), I (B; — L))},
=1

TeS, 2 »Tpep

where S, is the n-element permutation group and ™ € S, is an arbitrary n-element permutation.

The proof is given by Theorem 3.1 (1).

Let g(z) = 25, f(z) = a(l — a)% and k = @ = a(l;a). Then we have

(z

1
I(p,®) = 5 DD G = AT = AT on) [
itk

We assume that a = % and give three examples.

Example 4.2. (1) Phase damping channel

2
O(p) =Y KipK;
i=1
with
K1 =10)(0] + 1 =p[1){1], K2 = p|1)(1], 0<p<1.
(2) Amplitude damping channel
2
U(p) = LipL;
i=1
with
Ly = |0){0] + /1 = p[1)(1], Ly = \/pl0)(1], 0 <p < 1.

(3) Other channel

2
=(0) = 3 Eipl;
i=1



with

Ey = [0)(1] + /1= p1){0], B2 = y/p|1)(0], 0<p < 1.
Then for an arbitrary qubit state p = 1(I+r - o), where I is the identity operator, r = (r1,72,73)
is a real three-dimensional vector such that |r|*> =% + 12 + 73 <1, 0 = (0,,0,,0,) are the Pauli

matrices, we have

(11— VI—p)(rf+r3)

I(p, @) =
(p, ®) 55 :
(L VTR)0 1) +prd
I(p, V) = 5s :
I(p ':')_ |r|2+r?2)_ \/]‘_p(’r%_rg)
R 2s

where s = 1+ /1 — |r|2. These three quantities characterizes the difference of the three channels

from an information-theoretic perspective.
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