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Abstract

We survey some results related to trigonometric series of one variable, which are basic and

classic in harmonic analysis. We give proofs for the results in detail.

1. Introduction

We review some basic, classic results in harmonic analysis. We focus on results related to

trigonometric series. Proofs will be given for the results in detail.

In Section 2, we shall recall the definitions of the Dirichlet kernels Dn(x), the conjugate Dirichlet

kernels D̃n(x), the Fejér kernels Kn(x) and the conjugate Fejér kernels K̃n(x) and we shall state

some formulae including those kernels.

We shall consider some special trigomometric series with decreasing positive coefficients in

Section 3. Among other things, we shall prove that the series

∞∑
n=1

cosnx

log(2 + n)

is a Fourier series, while

∞∑
n=1

sinnx

log(2 + n)

is not a Fourier series.

In Section 4, we shall prove the characterization due to Wiener of Fourier coefficients of functions

of bounded variation with removable discontinuities.

In this note Z denotes the set of integers and N stands for the set of positive integers.
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2. Some definitions and formulae for trigonometric functions

Definition 2.1. The Dirichlet kernels Dn(x), n ≥ 0, are defined as

Dn(x) =
1

2
+ cosx+ cos 2x+ · · ·+ cosnx, n ≥ 1; D0(x) =

1

2
.

Definition 2.2. We define the conjugate Dirichlet kernels D̃n(x), n ≥ 0, as

D̃n(x) = sinx+ sin 2x+ · · ·+ sinnx, n ≥ 1; D̃0(x) = 0.

Definition 2.3. The Fejér kernels Kn(x), n ≥ 0, are defined as

Kn(x) =
1

n+ 1

n∑
ν=0

Dν(x).

Definition 2.4. We define the conjugate Fejér kernels K̃n(x), n ≥ 0, as

K̃n(x) =
1

n+ 1

n∑
ν=0

D̃ν(x).

Theorem 2.5. Let n ≥ 1. We have

1

2
a0 +

n∑
m=1

am cosmx =

n−1∑
ν=0

Dν(x)∆aν + anDn(x),

where ∆aν = aν − aν+1 for ν ≥ 0.

Theorem 2.6. Let n ≥ 2. We see that

(2.1)
n−1∑
ν=0

Dν(x)∆aν =

n−2∑
m=0

(m+ 1)Km(x)∆2am + nKn−1(x)∆an−1,

where ∆2am = ∆(∆am) = ∆am −∆am+1 = am − am+1 − (am+1 − am+2) = am − 2am+1 + am+2;

(2.2)
1

2
a0 +

n∑
m=1

am cosmx =

n−2∑
m=0

(m+ 1)Km(x)∆2am + nKn−1(x)∆an−1 + anDn(x).

Theorem 2.7. Let n ≥ 2. We have

n∑
m=1

bm sinmx =

n−1∑
ν=1

D̃ν(x)∆bν + bnD̃n(x).
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2. Some definitions and formulae for trigonometric functions

Definition 2.1. The Dirichlet kernels Dn(x), n ≥ 0, are defined as

Dn(x) =
1

2
+ cosx+ cos 2x+ · · ·+ cosnx, n ≥ 1; D0(x) =

1

2
.

Definition 2.2. We define the conjugate Dirichlet kernels D̃n(x), n ≥ 0, as

D̃n(x) = sinx+ sin 2x+ · · ·+ sinnx, n ≥ 1; D̃0(x) = 0.

Definition 2.3. The Fejér kernels Kn(x), n ≥ 0, are defined as

Kn(x) =
1

n+ 1

n∑
ν=0

Dν(x).

Definition 2.4. We define the conjugate Fejér kernels K̃n(x), n ≥ 0, as

K̃n(x) =
1

n+ 1

n∑
ν=0

D̃ν(x).

Theorem 2.5. Let n ≥ 1. We have

1

2
a0 +

n∑
m=1

am cosmx =

n−1∑
ν=0

Dν(x)∆aν + anDn(x),

where ∆aν = aν − aν+1 for ν ≥ 0.

Theorem 2.6. Let n ≥ 2. We see that

(2.1)
n−1∑
ν=0

Dν(x)∆aν =

n−2∑
m=0

(m+ 1)Km(x)∆2am + nKn−1(x)∆an−1,

where ∆2am = ∆(∆am) = ∆am −∆am+1 = am − am+1 − (am+1 − am+2) = am − 2am+1 + am+2;

(2.2)
1

2
a0 +

n∑
m=1

am cosmx =

n−2∑
m=0

(m+ 1)Km(x)∆2am + nKn−1(x)∆an−1 + anDn(x).

Theorem 2.7. Let n ≥ 2. We have

n∑
m=1

bm sinmx =

n−1∑
ν=1

D̃ν(x)∆bν + bnD̃n(x).

Theorem 2.8. Let n ≥ 3. We see that

(2.3)

n−1∑
ν=1

D̃ν(x)∆bν =

n−2∑
m=1

(m+ 1)K̃m(x)∆2bm + nK̃n−1(x)∆bn−1;

(2.4)
n∑

m=1

bm sinmx =

n−2∑
m=1

(m+ 1)K̃m(x)∆2bm + nK̃n−1(x)∆bn−1 + bnD̃n(x).

Proof of Theorem 2.5. Applying summation by parts arguments (see [3, Theorem 3.41, p.70]), we

have

1

2
a0 +

n∑
m=1

am cosmx =
1

2
a0 +

n∑
m=1

am(Dm(x)−Dm−1(x))

=
1

2
a0 +

n∑
m=1

amDm(x)−
n∑

m=1

amDm−1(x)

=
n−1∑
ν=0

aνDν(x) + anDn(x)−
n−1∑
ν=0

aν+1Dν(x)

=
n−1∑
ν=0

Dν(x)∆aν + anDn(x).

□

Proof of Theorem 2.6. Proof of (2.1). We note that Dν = (ν + 1)Kν − νKν−1 for ν ≥ 1, and

D0 = K0. Thus
n−1∑
ν=0

Dν(x)∆aν = K0∆a0 +

n−1∑
ν=1

(ν + 1)Kν∆aν −
n−1∑
ν=1

νKν−1∆aν

= K0∆a0 +

n−2∑
m=1

(m+ 1)Km∆am + nKn−1(x)∆an−1 −
n−2∑
m=0

(m+ 1)Km∆am+1

=

n−2∑
m=0

(m+ 1)Km(x)∆2am + nKn−1(x)∆an−1.

This proves (2.1). The formula (2.2) follows from Theorem 2.5 and (2.1). □

Proof of Theorem 2.7. We note that sinmx = D̃m(x)− D̃m−1(x) for m ≥ 1 and D̃0(x) = 0. Thus
n∑

m=1

bm sinmx =

n∑
m=1

bm(D̃m(x)− D̃m−1(x))

=
n∑

ν=1

bνD̃ν(x)−
n−1∑
ν=0

bν+1D̃ν(x)

=
n−1∑
ν=1

D̃ν(x)∆bν + bnD̃n(x). □
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Proof of Theorem 2.8. Proof of (2.3). We note that D̃ν = (ν + 1)K̃ν − νK̃ν−1 for ν ≥ 1, and

D̃0 = K̃0 = 0. Thus

n−1∑
ν=1

D̃ν(x)∆bν =

n−1∑
ν=1

(ν + 1)K̃ν∆bν −
n−1∑
ν=1

νK̃ν−1∆bν

=

n−2∑
m=1

(m+ 1)K̃m∆bm + nK̃n−1(x)∆bn−1 −
n−2∑
m=1

(m+ 1)K̃m∆bm+1

=

n−2∑
m=1

(m+ 1)K̃m(x)∆2bm + nK̃n−1(x)∆bn−1.

This completes the proof of (2.3). The equation (2.4) follows from Theorem 2.7 and (2.3). □

For the Dirichlet kernels and the conjugate Dirichlet kernels, we have the following formulae.

Theorem 2.9 (Zygmund [6, p. 2]). Let n ≥ 0. We have

Dn(x) =
sin(n+ 1

2 )x

2 sin 1
2x

.

Proof. The proof is needed only for the case n ≥ 1. We express 2 sin 1
2xDn(x) by a telescoping

series and see that

sin
1

2
x+

n∑
ν=1

2 sin
1

2
x cos νx = sin

1

2
x+

n∑
ν=1

(
sin(ν +

1

2
)x− sin(ν − 1

2
)x

)

= sin(n+
1

2
)x,

which implies the conclusion. □

Theorem 2.10 (Zygmund [6, p. 2]). Let n ≥ 0. We have

D̃n(x) =
cos 1

2x− cos(n+ 1
2 )x

2 sin 1
2x

.

Proof. We may assume that n ≥ 1. Similarly to the proof of Theorem 2.9, we have

n∑
ν=1

2 sin
1

2
x sin νx =

n∑
ν=1

(
cos(ν − 1

2
)x− cos(ν +

1

2
)x

)

= cos
1

2
x− cos(n+

1

2
)x,

from which we deduce the conclusion. □

Applying Theorem 2.9, we have the following.
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Proof of Theorem 2.8. Proof of (2.3). We note that D̃ν = (ν + 1)K̃ν − νK̃ν−1 for ν ≥ 1, and

D̃0 = K̃0 = 0. Thus

n−1∑
ν=1

D̃ν(x)∆bν =

n−1∑
ν=1

(ν + 1)K̃ν∆bν −
n−1∑
ν=1

νK̃ν−1∆bν

=

n−2∑
m=1

(m+ 1)K̃m∆bm + nK̃n−1(x)∆bn−1 −
n−2∑
m=1

(m+ 1)K̃m∆bm+1

=

n−2∑
m=1

(m+ 1)K̃m(x)∆2bm + nK̃n−1(x)∆bn−1.

This completes the proof of (2.3). The equation (2.4) follows from Theorem 2.7 and (2.3). □

For the Dirichlet kernels and the conjugate Dirichlet kernels, we have the following formulae.

Theorem 2.9 (Zygmund [6, p. 2]). Let n ≥ 0. We have

Dn(x) =
sin(n+ 1

2 )x

2 sin 1
2x

.

Proof. The proof is needed only for the case n ≥ 1. We express 2 sin 1
2xDn(x) by a telescoping

series and see that

sin
1

2
x+

n∑
ν=1

2 sin
1

2
x cos νx = sin

1

2
x+

n∑
ν=1

(
sin(ν +

1

2
)x− sin(ν − 1

2
)x

)

= sin(n+
1

2
)x,

which implies the conclusion. □

Theorem 2.10 (Zygmund [6, p. 2]). Let n ≥ 0. We have

D̃n(x) =
cos 1

2x− cos(n+ 1
2 )x

2 sin 1
2x

.

Proof. We may assume that n ≥ 1. Similarly to the proof of Theorem 2.9, we have

n∑
ν=1

2 sin
1

2
x sin νx =

n∑
ν=1

(
cos(ν − 1

2
)x− cos(ν +

1

2
)x

)

= cos
1

2
x− cos(n+

1

2
)x,

from which we deduce the conclusion. □

Applying Theorem 2.9, we have the following.

Theorem 2.11 (Zygmund [6, p. 88]). For n ≥ 0 we have

Kn(t) =
1

n+ 1

n∑
ν=0

Dν(t) =
1

n+ 1

n∑
ν=0

sin(ν + 1
2 )t

2 sin 1
2 t

=
1

n+ 1

1− cos(n+ 1)t

(2 sin 1
2 t)

2

=
2

n+ 1

{
sin 1

2 (n+ 1)t

2 sin 1
2 t

}2

.

Proof. The second equality follows from Theorem 2.9. We note that

n∑
ν=0

2 sin
1

2
t sin(ν +

1

2
)t =

n∑
ν=0

(cos νt− cos(ν + 1)t)

= 1− cos(n+ 1)t,

which implies the third equality. The last equality follows by the formula 1−cos θ = 2 sin2(θ/2). □

Using Theorem 2.10, we have the following.

Theorem 2.12 (Zygmund [6, p. 91]). Let n ≥ 0. Then

K̃n(t) =
1

n+ 1

n∑
ν=0

D̃ν(t) =
1

2
cot

1

2
t− 1

n+ 1

n∑
ν=0

cos(ν + 1
2 )t

2 sin 1
2 t

=
1

2
cot

1

2
t− 1

n+ 1

sin(n+ 1)t

(2 sin 1
2 t)

2
.

Proof. The second equality follows from Theorem 2.10. We see that

n∑
ν=0

2 sin
1

2
t cos(ν +

1

2
)t =

n∑
ν=0

(sin(ν + 1)t− sin νt)

= sin(n+ 1)t,

which implies the last equality. □

3. Special trigomometric series with decreasing positive coefficients

For results in this section we refer to [2, III].

We consider the series of the form

(3.1)

∞∑
n=1

λne
inθ,

where λn > 0, λn ≥ λn+1 for all n ≥ 1.
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Theorem 3.1. Let the series
∑

λne
inθ be as in (3.1). We further assume that λn → 0 as n → ∞.

Then the series is uniformly convergent in any subset I of R such that dist(I, 2πZ) > 0, where

2πZ = {2kπ : k ∈ Z} and dist(E,F ) = infx∈E,y∈F |x− y| for E,F ⊂ R.

Corollary 3.2. Let I be a subset of R as in Theorem 3.1. Then each of the two series

∞∑
n=1

sinnθ

n
,

∞∑
n=1

cosnθ

n

converges uniformly on I.

This follows from Theorem 3.1 with λn = 1/n.

To prove Theorem 3.1 we need the following lemmas.

Lemma 3.3. Let 0 ≤ p ≤ q, p, q ∈ Z and θ ∈ R \ 2πZ. Then
∣∣∣∣∣

q∑
n=p

einθ

∣∣∣∣∣ ≤
1

| sin 1
2θ|

.

Lemma 3.4. Let 0 ≤ p ≤ q, p, q ∈ Z and λn > 0, λn ≥ λn+1 for n ≥ 0, n ∈ Z. Then
∣∣∣∣∣

q∑
n=p

λne
inθ

∣∣∣∣∣ ≤
λp

| sin 1
2θ|

,

for θ ∈ R \ 2πZ.

Proof of Lemma 3.3. Summing up a geometric series, we have

q∑
n=p

einθ = eipθ
q−p∑
n=0

einθ = eipθ
1− ei(q−p+1)θ

1− eiθ
.

We note that

|1− eiθ|2 = (1− cos θ)2 + sin2 θ = 2(1− cos θ) = 4 sin2
θ

2
.

Thus ∣∣∣∣∣
q∑

n=p

einθ

∣∣∣∣∣ ≤
2

|1− eiθ|
=

1

| sin 1
2θ|

.

□

Proof of Lemma 3.4. Let

Um =

m∑
n=p

einθ.

− 120 −

研究紀要　第 98号



Theorem 3.1. Let the series
∑

λne
inθ be as in (3.1). We further assume that λn → 0 as n → ∞.

Then the series is uniformly convergent in any subset I of R such that dist(I, 2πZ) > 0, where

2πZ = {2kπ : k ∈ Z} and dist(E,F ) = infx∈E,y∈F |x− y| for E,F ⊂ R.

Corollary 3.2. Let I be a subset of R as in Theorem 3.1. Then each of the two series

∞∑
n=1

sinnθ

n
,

∞∑
n=1

cosnθ

n

converges uniformly on I.

This follows from Theorem 3.1 with λn = 1/n.

To prove Theorem 3.1 we need the following lemmas.

Lemma 3.3. Let 0 ≤ p ≤ q, p, q ∈ Z and θ ∈ R \ 2πZ. Then
∣∣∣∣∣

q∑
n=p

einθ

∣∣∣∣∣ ≤
1

| sin 1
2θ|

.

Lemma 3.4. Let 0 ≤ p ≤ q, p, q ∈ Z and λn > 0, λn ≥ λn+1 for n ≥ 0, n ∈ Z. Then
∣∣∣∣∣

q∑
n=p

λne
inθ

∣∣∣∣∣ ≤
λp

| sin 1
2θ|

,

for θ ∈ R \ 2πZ.

Proof of Lemma 3.3. Summing up a geometric series, we have

q∑
n=p

einθ = eipθ
q−p∑
n=0

einθ = eipθ
1− ei(q−p+1)θ

1− eiθ
.

We note that

|1− eiθ|2 = (1− cos θ)2 + sin2 θ = 2(1− cos θ) = 4 sin2
θ

2
.

Thus ∣∣∣∣∣
q∑

n=p

einθ

∣∣∣∣∣ ≤
2

|1− eiθ|
=

1

| sin 1
2θ|

.

□

Proof of Lemma 3.4. Let

Um =

m∑
n=p

einθ.

Then by Lemma 3.3, |Um| ≤ 1/| sin(θ/2)|. Applying summation by parts, we write
q∑

n=p

λne
inθ = λpUp + λp+1(Up+1 − Up) + · · ·+ λq(Uq − Uq−1)

= Up(λp − λp+1) + Up+1(λp+1 − λp+2) + · · ·+ Uq−1(λq−1 − λq) + λqUq.

Thus, using |Um| ≤ 1/| sin(θ/2)| and λm ≥ λm+1 ≥ 0, we see that∣∣∣∣∣
q∑

n=p

λne
inθ

∣∣∣∣∣ ≤
1

| sin 1
2θ|

((λp − λp+1) + (λp+1 − λp+2) + · · ·+ (λq−1 − λq) + λq)

=
1

| sin 1
2θ|

λp.

□

Proof of Theorem 3.1. Let δ = dist(I, 2πZ). Then, using the inequality sin θ ≥ (2/π)θ, 0 < θ ≤
π/2, we see that

(3.2) sup
θ∈I

1

| sin 1
2θ|

≤ πδ−1.

Given ϵ > 0, there exists p0 ∈ N such that λp0
πδ−1 < ϵ. Thus, if p0 ≤ p ≤ q and θ ∈ I, by Lemma

3.4 and (3.2) we have ∣∣∣∣∣
q∑

n=p

λne
inθ

∣∣∣∣∣ ≤
1

| sin 1
2θ|

λp

≤ λpπδ
−1 ≤ λp0

πδ−1 < ϵ.

Therefore the series
∑

λne
inθ is uniformly convergent on I by the Cauchy criterion. □

Theorem 3.5. Suppose that λn > 0, λn ≥ λn+1 for all n ≥ 1 and nλn ≤ C0 for all n ≥ 1 with a

constant C0. Then the series
∑∞

n=1 λn sinnθ is boundedly convergent on R.

Corollary 3.6. The series
∑∞

n=1 n
−1 sinnθ is boundedly convergent on R.

Proof of Theorem 3.5. Let UN (θ) =
∑N

n=1 λn sinnθ. We show that |UN (θ)| ≤ C for θ ∈ (0, π)

with a constant C independent of θ and N . This implies that the same holds for −π < θ < 0 by

the oddness of the function UN . Also, we have UN (−π) = UN (0) = UN (π) = 0. It follows that

|UN (θ)| ≤ C for θ ∈ [−π, π]. Thus the inequality is true for all θ ∈ R by the 2π periodicity of UN ,

which is what we need.

We split
∑N

n=1 λn sinnθ into two pieces:

UN (θ) =

N∑
n=1

λn sinnθ =

M∑
n=1

λn sinnθ +

N∑
n=M+1

λn sinnθ = S1 + S2, say.
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By Lemma 3.4, we see that

(3.3) |S2| ≤

∣∣∣∣∣
N∑

n=M+1

λne
inθ

∣∣∣∣∣ ≤
λM+1

| sin 1
2θ|

≤ C0

M + 1

1

| sin 1
2θ|

.

On the other hand, since | sinnθ| ≤ n|θ|, we have

(3.4) |S1| =

∣∣∣∣∣
M∑
n=1

λn sinnθ

∣∣∣∣∣ ≤
M∑
n=1

λnnθ ≤ C0Mθ.

If we choose M so that θ−1 ≤ M < θ−1 + 1, then by (3.4)

(3.5) |S1| ≤ C0(θ
−1 + 1)θ = C0(1 + θ) ≤ C0(1 + π).

Also, since sin x ≥ (2/π)x (0 < x ≤ π/2), by (3.3)

(3.6) |S2| ≤ C0
1

M + 1

π

θ
≤ C0

1

M + 1
Mπ ≤ C0π.

Combining (3.5) and (3.6), we have |UN (θ)| ≤ C0(1 + 2π), which completes the proof. □

Let λn > 0, n = 0, 1, 2, . . . , λn ≥ λn+1, n ≥ 0, λn → 0. We consider

(C) f(θ) =
1

2
λ0 +

∞∑
n=1

λn cosnθ, (S) g(θ) =

∞∑
n=1

λn sinnθ.

By Theorem 3.1, each of the two series is uniformly convergent on any compact subset of [−π, π] \
{0} and so f , g are continuous on [−π, π] \ {0}.

Theorem 3.7. Suppose that f ∈ L1([−π, π]). Then the series in (C) is the Fourier series of f .

Also, if g ∈ L1([−π, π]), then the series in (S) is the Fourier series of g.

Proof. Suppose that g ∈ L1([−π, π]) and m ∈ N. We note that the series
∑∞

n=1 λn sinnθ sinmθ

converges uniformly on [−π, π]. This can be seen through the Cauchy criterion by using Lemma

3.4 as follows: ∣∣∣∣∣
q∑

n=p

λn sinnθ sinmθ

∣∣∣∣∣ ≤
λp

| sin 1
2θ|

| sinmθ|

≤ λp
m|θ|

(2/π)|(1/2)θ|
= λpmπ,

where the second inequality follows from the inequalities | sinx| ≤ |x| and | sin y| ≥ (2/π)|y|
(|y| ≤ π/2). Thus we can apply term by term integration and get

1

π

∫ π

−π

g(θ) sinmθ dθ =

∞∑
n=1

λn
1

π

∫ π

−π

sinnθ sinmθ dθ = λm

for m ∈ N. This is what we have claimed for (S).
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By Lemma 3.4, we see that

(3.3) |S2| ≤

∣∣∣∣∣
N∑

n=M+1

λne
inθ

∣∣∣∣∣ ≤
λM+1

| sin 1
2θ|

≤ C0

M + 1

1

| sin 1
2θ|

.

On the other hand, since | sinnθ| ≤ n|θ|, we have

(3.4) |S1| =

∣∣∣∣∣
M∑
n=1

λn sinnθ

∣∣∣∣∣ ≤
M∑
n=1

λnnθ ≤ C0Mθ.

If we choose M so that θ−1 ≤ M < θ−1 + 1, then by (3.4)

(3.5) |S1| ≤ C0(θ
−1 + 1)θ = C0(1 + θ) ≤ C0(1 + π).

Also, since sin x ≥ (2/π)x (0 < x ≤ π/2), by (3.3)

(3.6) |S2| ≤ C0
1

M + 1

π

θ
≤ C0

1

M + 1
Mπ ≤ C0π.

Combining (3.5) and (3.6), we have |UN (θ)| ≤ C0(1 + 2π), which completes the proof. □

Let λn > 0, n = 0, 1, 2, . . . , λn ≥ λn+1, n ≥ 0, λn → 0. We consider

(C) f(θ) =
1

2
λ0 +

∞∑
n=1

λn cosnθ, (S) g(θ) =

∞∑
n=1

λn sinnθ.

By Theorem 3.1, each of the two series is uniformly convergent on any compact subset of [−π, π] \
{0} and so f , g are continuous on [−π, π] \ {0}.

Theorem 3.7. Suppose that f ∈ L1([−π, π]). Then the series in (C) is the Fourier series of f .

Also, if g ∈ L1([−π, π]), then the series in (S) is the Fourier series of g.

Proof. Suppose that g ∈ L1([−π, π]) and m ∈ N. We note that the series
∑∞

n=1 λn sinnθ sinmθ

converges uniformly on [−π, π]. This can be seen through the Cauchy criterion by using Lemma

3.4 as follows: ∣∣∣∣∣
q∑

n=p

λn sinnθ sinmθ

∣∣∣∣∣ ≤
λp

| sin 1
2θ|

| sinmθ|

≤ λp
m|θ|

(2/π)|(1/2)θ|
= λpmπ,

where the second inequality follows from the inequalities | sinx| ≤ |x| and | sin y| ≥ (2/π)|y|
(|y| ≤ π/2). Thus we can apply term by term integration and get

1

π

∫ π

−π

g(θ) sinmθ dθ =

∞∑
n=1

λn
1

π

∫ π

−π

sinnθ sinmθ dθ = λm

for m ∈ N. This is what we have claimed for (S).

Next, let f ∈ L1([−π, π]). As in the case of (S), the series

1

2
λ0(1− cosmθ) +

∞∑
n=1

λn cosnθ(1− cosmθ)

converges uniformly on [−π, π], since
∣∣∣∣∣

q∑
n=p

λn cosnθ(1− cosmθ)

∣∣∣∣∣ ≤
λp

| sin 1
2θ|

|(1− cosmθ)|

≤ λp
(1/2)(mθ)2

(2/π)|(1/2)θ|
= λpm

2π|θ|/2,

for m ≥ 1, where for the second inequality the estimate |1 − cosx| ≤ (1/2)x2 is also used. Thus,

integrating term by term, for m ≥ 1 we have

(3.7)
1

π

∫ π

−π

f(θ)(1− cosmθ) dθ = λ0 −
∞∑

n=1

λn
1

π

∫ π

−π

cosnθ cosmθ dθ = λ0 − λm.

Letting m → ∞ and using the Riemann-Lebesgue lemma (see [4, p.103]) and our assumption that

λm → 0, we have 1
π

∫ π

−π
f(θ) dθ = λ0. Using this in (3.7), we have 1

π

∫ π

−π
f(θ) cosmθ dθ = λm for

all m ≥ 1. This completes the proof. □

Theorem 3.8. Let {λn} be as in the definition of the series (C) and (S). Set

Λ =

∞∑
n=1

λn

n
.

(1) If Λ < ∞, then f, g ∈ L1([−π, π]) and the series in (C) and (S) are Fourier series of f

and g, respectively.

(2) If g ∈ L1([−π, π]) and the series in (S) is the Fourier series of g, then Λ < ∞.

Proof. Proof of part (1). Let Λk =
∑k

n=1 λn. Then

∞∑
k=1

Λk

k(k + 1)
=

∞∑
k=1

1

k(k + 1)

k∑
n=1

λn

=

∞∑
n=1

λn

∞∑
k=n

1

k(k + 1)

= Λ.

Let f and g be as in (C) and (S) and define h = f + ig. Let k satisfy π/(k + 1) ≤ θ < π/k, for

θ ∈ (0, π). We write

h =
1

2
λ0 +

∞∑
n=1

λne
inθ =

1

2
λ0 +

k−1∑
n=1

λne
inθ +

∞∑
n=k

λne
inθ
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and by Lemma 3.4 we see that

|h| ≤ 1

2
λ0 +

k−1∑
n=1

λn +
λk

sin 1
2θ

≤ 1

2
λ0 + Λk +

πλk

θ
≤ 1

2
λ0 + Λk + (k + 1)λk.

Thus
∫ π

0

|h(θ)| dθ =

∞∑
k=1

∫ π/k

π/(k+1)

|h(θ)| dθ

≤
∞∑
k=1

(
1

2
λ0 + Λk)

π

k(k + 1)
+

∞∑
k=1

πλk

k

= π(
1

2
λ0 + 2Λ).

Thus, if Λ < ∞, then f, g ∈ L1([−π, π]). Therefore, Theorem 3.7 implies part (1).

Proof of part (2). Suppose that g ∈ L1([−π, π]) and λm = 1
π

∫ π

−π
g(θ) sinmθ dθ. Then

(3.8)
N∑

m=1

λm

m
=

1

π

∫ π

−π

g(θ)

N∑
m=1

sinmθ

m
dθ.

Since
∑∞

m=1
sinmθ

m converges boundedly by Theorem 3.5, letting N → ∞ in (3.8), we have

∞∑
m=1

λm

m
=

1

π

∫ π

−π

g(θ)

∞∑
m=1

sinmθ

m
dθ < ∞.

□

Here we recall some results on numerical series.

Lemma 3.9. Let {vn}∞n=0 be a sequence of complex numbers. Let ∆vn = vn − vn+1 and ∆2vn =

∆(∆vn), n ≥ 0.

(1) If vn → 0, then
∑∞

n=0 ∆vn = v0.

(2) If nvn → 0 and either
∑∞

n=0 vn or
∑∞

n=0(n + 1)∆vn is convergent, then
∑∞

n=0 vn =
∑∞

n=0(n+ 1)∆vn.

(3) If vn ≥ vn+1, vn ≥ 0 for n ≥ 0 and
∑∞

n=0 vn < ∞, then nvn → 0.

(4) If vn → 0 and {vn} is convex, which means that ∆2vn ≥ 0 for n ≥ 0, then ∆vn ≥ 0,

n ≥ 0, n∆vn → 0 and

(3.9)

∞∑
n=0

(n+ 1)∆2vn =

∞∑
n=0

∆vn = v0.

Proof. Proof of part (1). We see that
∑N

n=0 ∆vn = v0 − vN+1. So letting N → ∞, we get the

conclusion.
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and by Lemma 3.4 we see that

|h| ≤ 1

2
λ0 +

k−1∑
n=1

λn +
λk

sin 1
2θ

≤ 1

2
λ0 + Λk +

πλk

θ
≤ 1

2
λ0 + Λk + (k + 1)λk.

Thus
∫ π

0

|h(θ)| dθ =

∞∑
k=1

∫ π/k

π/(k+1)

|h(θ)| dθ

≤
∞∑
k=1

(
1

2
λ0 + Λk)

π

k(k + 1)
+

∞∑
k=1

πλk

k

= π(
1

2
λ0 + 2Λ).

Thus, if Λ < ∞, then f, g ∈ L1([−π, π]). Therefore, Theorem 3.7 implies part (1).

Proof of part (2). Suppose that g ∈ L1([−π, π]) and λm = 1
π

∫ π

−π
g(θ) sinmθ dθ. Then

(3.8)
N∑

m=1

λm

m
=

1

π

∫ π

−π

g(θ)

N∑
m=1

sinmθ

m
dθ.

Since
∑∞

m=1
sinmθ

m converges boundedly by Theorem 3.5, letting N → ∞ in (3.8), we have

∞∑
m=1

λm

m
=

1

π

∫ π

−π

g(θ)

∞∑
m=1

sinmθ

m
dθ < ∞.

□

Here we recall some results on numerical series.

Lemma 3.9. Let {vn}∞n=0 be a sequence of complex numbers. Let ∆vn = vn − vn+1 and ∆2vn =

∆(∆vn), n ≥ 0.

(1) If vn → 0, then
∑∞

n=0 ∆vn = v0.

(2) If nvn → 0 and either
∑∞

n=0 vn or
∑∞

n=0(n + 1)∆vn is convergent, then
∑∞

n=0 vn =
∑∞

n=0(n+ 1)∆vn.

(3) If vn ≥ vn+1, vn ≥ 0 for n ≥ 0 and
∑∞

n=0 vn < ∞, then nvn → 0.

(4) If vn → 0 and {vn} is convex, which means that ∆2vn ≥ 0 for n ≥ 0, then ∆vn ≥ 0,

n ≥ 0, n∆vn → 0 and

(3.9)

∞∑
n=0

(n+ 1)∆2vn =

∞∑
n=0

∆vn = v0.

Proof. Proof of part (1). We see that
∑N

n=0 ∆vn = v0 − vN+1. So letting N → ∞, we get the

conclusion.

Proof of part (2). We note that

N∑
n=0

(n+ 1)∆vn =

N∑
n=0

(n+ 1)vn −
N+1∑
n=1

nvn =

N∑
n=0

vn − (N + 1)vN+1,

which implies the claim.

Proof of part (3). We have

n∑
k=[n/2]

vk ≥ (n− [n/2] + 1)vn ≥ ((n/2) + 1)vn ≥ (n/2)vn ≥ 0.

It follows that nvn → 0.

Proof of part (4). Since {∆vn} is decreasing and converges to 0, we have ∆vn ≥ 0. Since

vn → 0, by part (1)
∑

∆vn is convergent. Thus by part (3) we see that n∆vn → 0. Therefore

we can apply part (2) and have the first equality of (3.9); the second equality follows from part

(1). □

Theorem 3.10. Suppose that {λn} is convex. Then f in (C) is non-negative and integrable;

further the series in (C) is the Fourier series of f .

Proof. By (2.2) of Theorem 2.6, Theorem 2.9 and Theorem 2.11 we have for 0 < θ < π

1

2
λ0 +

n∑
m=1

λm cosmθ

=
n−2∑
m=0

(m+ 1)Km(θ)∆2λm + nKn−1(θ)∆λn−1 + λnDn(θ)

=
1

4 sin2 1
2θ

(
n−2∑
ν=0

(1− cos(ν + 1)θ)∆2λν + (1− cosnθ)∆λn−1

)
+ λn

sin(n+ 1
2 )θ

2 sin 1
2θ

.

Since λn → 0 and ∆λn−1 → 0 as n → ∞, letting n → ∞, we have

f(θ) =
1

4 sin2 1
2θ

∞∑
ν=0

(1− cos(ν + 1)θ)∆2λν .

Obviously, f(θ) ≥ 0 and by
∫ π

0
Kν(θ) dθ = π/2, applying Lemma 3.9 (4), we have

∫ π

0

f(θ) dθ = (π/2)

∞∑
ν=0

(ν + 1)∆2λν = (π/2)λ0.

Thus by Theorem 3.7 the series in (C) is the Fourier series of f . □

Corollary 3.11. We have the following results.
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(1) The series
∞∑

n=1

cosnx

log(2 + n)

is a Fourier series.

(2) The series
∞∑

n=1

sinnx

log(2 + n)

is not a Fourier series.

Proof. Since the sequence {(log(2 + n))−1} is convex, by Theorem 3.10 we have part (1).

To prove part (2), let g(x) =
∑∞

n=1 sinnx/ log(2 + n) (the series is convergent pointwise). We

recall the fact that
∑∞

n=1 1/(n log(2 + n)) = ∞. If there exists h ∈ L1([−π, π]) such that the

series
∑∞

n=1 sinnx/ log(2 + n) is the Fourier series of h, then it is known that h = g. Thus

g ∈ L1([−π, π]), which would imply by Theorem 3.8 (2) that
∑∞

n=1 1/(n log(2 + n)) < ∞. Thus

we reach a contradiction. This completes the proof of part (2). □

By Corollary 3.11 we can see that the conjugate function (the Hilbert transform) of an integrable

function need not be integrable. To confirm this it may be helpful to consult [2, Theorem 76] where

a relation between the existence of the Hilbert transform and Abel summability of the conjugate

series is investigated.

The series in Corollary 3.2 can be expressed as follows.

Theorem 3.12. Let 0 < θ < 2π. Then

cos θ +
1

2
cos(2θ) +

1

3
cos(3θ) + . . . = − log

(
2 sin

θ

2

)
,(3.10)

sin θ +
1

2
sin(2θ) +

1

3
sin(3θ) + . . . =

π − θ

2
.(3.11)

Definition 3.13. Let w ∈ C \ (−∞, 0]. Then we have a unique θ ∈ (−π, π) such that

w

|w|
= eiθ.

We define Argw = θ.

Definition 3.14. For x > 0, lnx is defined as

lnx =

∫ x

1

1

y
dy.
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(1) The series
∞∑

n=1

cosnx

log(2 + n)

is a Fourier series.

(2) The series
∞∑

n=1

sinnx

log(2 + n)

is not a Fourier series.

Proof. Since the sequence {(log(2 + n))−1} is convex, by Theorem 3.10 we have part (1).

To prove part (2), let g(x) =
∑∞

n=1 sinnx/ log(2 + n) (the series is convergent pointwise). We

recall the fact that
∑∞

n=1 1/(n log(2 + n)) = ∞. If there exists h ∈ L1([−π, π]) such that the

series
∑∞

n=1 sinnx/ log(2 + n) is the Fourier series of h, then it is known that h = g. Thus

g ∈ L1([−π, π]), which would imply by Theorem 3.8 (2) that
∑∞

n=1 1/(n log(2 + n)) < ∞. Thus

we reach a contradiction. This completes the proof of part (2). □

By Corollary 3.11 we can see that the conjugate function (the Hilbert transform) of an integrable

function need not be integrable. To confirm this it may be helpful to consult [2, Theorem 76] where

a relation between the existence of the Hilbert transform and Abel summability of the conjugate

series is investigated.

The series in Corollary 3.2 can be expressed as follows.

Theorem 3.12. Let 0 < θ < 2π. Then

cos θ +
1

2
cos(2θ) +

1

3
cos(3θ) + . . . = − log

(
2 sin

θ

2

)
,(3.10)

sin θ +
1

2
sin(2θ) +

1

3
sin(3θ) + . . . =

π − θ

2
.(3.11)

Definition 3.13. Let w ∈ C \ (−∞, 0]. Then we have a unique θ ∈ (−π, π) such that

w

|w|
= eiθ.

We define Argw = θ.

Definition 3.14. For x > 0, lnx is defined as

lnx =

∫ x

1

1

y
dy.

Definition 3.15. For w ∈ C \ (−∞, 0], logw is defined as

logw = ln |w|+ iArgw.

We note that log x = lnx for x > 0.

To prove Theorem 3.12 we need the following two lemmas.

Lemma 3.16. Let z ∈ C, |z| ≤ 1, z ̸= 1. Then

− log(1− z) = z +
1

2
z2 +

1

3
z3 + . . . ,

where log is as in Definition 3.15 (we note that 1− z ∈ {w ∈ C : |w − 1
2 | ≤

1
2} \ {0}).

Lemma 3.17. Let T : (−π/2, π/2) → R be the bijection defined by T = tan |(−π/2, π/2) (the

restriction of tan to (−π/2, π/2)). Suppose that z = x+ iy, x = Re z > 0. Then

Arg z = T−1
(y
x

)
,

where T−1 : R → (−π/2, π/2) is the inverse mapping of T .

Proof of Lemma 3.16. We use the equation

1

1− x
− (1 + x+ x2 + · · ·+ xn) =

xn+1

1− x
, 0 ≤ x < 1.

Integration of both sides gives
∫ x

0

1

1− y
dy − (x+

1

2
x2 + · · ·+ 1

n+ 1
xn+1) =

∫ x

0

yn+1

1− y
dy

for 0 ≤ x < 1. By changing variables and Definition 3.14, we see that
∫ x

0

1

1− y
dy = −

∫ 1−x

1

1

y
dy = − ln(1− x) = − log(1− x).

Thus ∣∣∣∣− log(1− x)− (x+
1

2
x2 + · · ·+ 1

n+ 1
xn+1)

∣∣∣∣ ≤
1

1− x

∫ 1

0

yn+1 dy =
1

1− x

1

n+ 2
.

Letting n → ∞, we see that

(3.12) − log(1− x) = x+
1

2
x2 + · · ·+ 1

n
xn + . . . , 0 ≤ x < 1.

Let

F (z) = z +
1

2
z2 + · · ·+ 1

n
zn + . . .

for |z| < 1. Then F is holomorphic in |z| < 1 and it is known that − log(1− z) is also holomorphic

in |z| < 1. Thus by the uniqueness of analytic continuation and (3.12), we have − log(1−z) = F (z)

for |z| < 1.
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The series defining F (z) is also convergent if |z| = 1 and z ̸= 1 (see Corollary 3.2 and also [3,

Theorem 3.44, Chap. 3]). Thus by Abel’s theorem (see [3, Theorem 8.2, Chap. 8]), if z = eiθ,

0 < θ < 2π, we can define F (eiθ) by continuity as

F (eiθ) = lim
r→1,r<1

F (reiθ) = eiθ +
1

2
e2iθ + · · ·+ 1

n
eniθ + . . . .

Since − log(1 − z) = F (z) for |z| < 1 and − log(1 − z) is continuous at z = eiθ, 0 < θ < 2π, we

have F (eiθ) = − log(1− eiθ) for 0 < θ < 2π. This completes the proof of Lemma 3.16. □

Proof of Lemma 3.17. We have −π/2 < Arg z < π/2, since Re z > 0. If Arg z = θ, by Definition

3.13 we have |z|−1z = eiθ = cos θ + i sin θ, which can be rewritten as

x√
x2 + y2

+ i
y√

x2 + y2
= cos θ + i sin θ.

It follows that tan θ = sin θ/ cos θ = y/x. Since −π/2 < θ < π/2, we have tan θ = T (θ). Thus

T (θ) = y/x and hence Arg z = θ = T−1(y/x). □

Proof of Theorem 3.12. Let z = eiθ with 0 < θ < 2π. Then by Lemma 3.16 we see that

−
(
log |1− eiθ|+ iArg(1− eiθ)

)
=

∞∑
n=1

eniθ

n
=

∞∑
n=1

cosnθ

n
+ i

∞∑
n=1

sinnθ

n
.

Comparing real and imaginary parts, we have

− log |1− eiθ| =
∞∑

n=1

cosnθ

n
,(3.13)

−Arg(1− eiθ) =

∞∑
n=1

sinnθ

n
.(3.14)

We note that

|1− eiθ|2 = (1− cos θ)2 + sin2 θ = 2(1− cos θ) = 4 sin2
θ

2
.

Using this in (3.13), we have (3.10).

Next, since Re(1−eiθ) > 0 and 1−eiθ = 1−cos θ−i sin θ, by Lemma 3.17 we have Arg(1−eiθ) =

T−1(− sin θ/(1− cos θ)). We note that

− sin θ

1− cos θ
= −

2 sin θ
2 cos

θ
2

2 sin2 θ
2

= −
cos θ

2

sin θ
2

= −
sin(π2 − θ

2 )

cos(π2 − θ
2 )

= tan

(
θ − π

2

)
.

Since 0 < θ < 2π, we have −π/2 < (θ−π)/2 < π/2. Thus tan(θ−π)/2 = T ((θ−π)/2). Therefore

T−1

(
− sin θ

1− cos θ

)
= T−1

(
tan

θ − π

2

)
= T−1 ◦ T

(
θ − π

2

)
=

θ − π

2
.

Thus we have Arg(1 − eiθ) = (θ − π)/2. Applying this in (3.14), we have (3.11). This completes

the proof of Theorem 3.12. □
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The series defining F (z) is also convergent if |z| = 1 and z ̸= 1 (see Corollary 3.2 and also [3,

Theorem 3.44, Chap. 3]). Thus by Abel’s theorem (see [3, Theorem 8.2, Chap. 8]), if z = eiθ,

0 < θ < 2π, we can define F (eiθ) by continuity as

F (eiθ) = lim
r→1,r<1

F (reiθ) = eiθ +
1

2
e2iθ + · · ·+ 1

n
eniθ + . . . .

Since − log(1 − z) = F (z) for |z| < 1 and − log(1 − z) is continuous at z = eiθ, 0 < θ < 2π, we

have F (eiθ) = − log(1− eiθ) for 0 < θ < 2π. This completes the proof of Lemma 3.16. □

Proof of Lemma 3.17. We have −π/2 < Arg z < π/2, since Re z > 0. If Arg z = θ, by Definition

3.13 we have |z|−1z = eiθ = cos θ + i sin θ, which can be rewritten as

x√
x2 + y2

+ i
y√

x2 + y2
= cos θ + i sin θ.

It follows that tan θ = sin θ/ cos θ = y/x. Since −π/2 < θ < π/2, we have tan θ = T (θ). Thus

T (θ) = y/x and hence Arg z = θ = T−1(y/x). □

Proof of Theorem 3.12. Let z = eiθ with 0 < θ < 2π. Then by Lemma 3.16 we see that

−
(
log |1− eiθ|+ iArg(1− eiθ)

)
=

∞∑
n=1

eniθ

n
=

∞∑
n=1

cosnθ

n
+ i

∞∑
n=1

sinnθ

n
.

Comparing real and imaginary parts, we have

− log |1− eiθ| =
∞∑

n=1

cosnθ

n
,(3.13)

−Arg(1− eiθ) =

∞∑
n=1

sinnθ

n
.(3.14)

We note that

|1− eiθ|2 = (1− cos θ)2 + sin2 θ = 2(1− cos θ) = 4 sin2
θ

2
.

Using this in (3.13), we have (3.10).

Next, since Re(1−eiθ) > 0 and 1−eiθ = 1−cos θ−i sin θ, by Lemma 3.17 we have Arg(1−eiθ) =

T−1(− sin θ/(1− cos θ)). We note that

− sin θ

1− cos θ
= −

2 sin θ
2 cos

θ
2

2 sin2 θ
2

= −
cos θ

2

sin θ
2

= −
sin(π2 − θ

2 )

cos(π2 − θ
2 )

= tan

(
θ − π

2

)
.

Since 0 < θ < 2π, we have −π/2 < (θ−π)/2 < π/2. Thus tan(θ−π)/2 = T ((θ−π)/2). Therefore

T−1

(
− sin θ

1− cos θ

)
= T−1

(
tan

θ − π

2

)
= T−1 ◦ T

(
θ − π

2

)
=

θ − π

2
.

Thus we have Arg(1 − eiθ) = (θ − π)/2. Applying this in (3.14), we have (3.11). This completes

the proof of Theorem 3.12. □

For the continuity of the function g in (S) we have the following result.

Theorem 3.18. Let g(θ) =
∑∞

n=1 λn sin(nθ) be as in (S); we recall that the series is convergent

for every θ ∈ R. Then the following three statements are equivalent.

(1) The function g is continuous on [0, 2π].

(2) The series
∑∞

n=1 λn sin(nθ) is uniformly convergent on [0, 2π].

(3) limn→∞ nλn = 0.

Lemma 3.19. We consider g(θ) =
∑∞

n=1 λn sin(nθ) as in (S). Suppose that g ∈ L1([0, 2π]). Then

∫ θ

0

g(t) dt =

∞∑
n=1

∫ θ

0

λn sin(nt) dt =

∞∑
n=1

λn(1− cos(nθ))

n
.

Proof. We note that
∫ 2π

0

g(x+ θ) sinnx dx =

∫ 2π

0

g(x) sinn(x− θ) dx

= cosnθ

∫ 2π

0

g(x) sinnx dx− sinnθ

∫ 2π

0

g(x) cosnx dx

= πλn cosnθ,

where the last equality follows from Theorem 3.7. Let G(x) =
∫ x

0
g(t) dt. Then G is 2π periodic,

which can be seen from G(x + 2π) − G(x) =
∫ x+2π

x
g(t) dt =

∫ 2π

0
g(t) dt = 0. Since the series

∑∞
n=1 n

−1 sinnx is boundedly convergent to (π − x)/2 by Corollary 3.6 and (3.11), we have

∞∑
n=1

1

n

∫ 2π

0

g(x+ θ) sinnx dx =

∫ 2π

0

g(x+ θ)

∞∑
n=1

sinnx

n
dx

=

∫ 2π

0

g(x+ θ)
π − x

2
dx

=

[
G(x+ θ)

π − x

2

]2π
0

+
1

2

∫ 2π

0

G(x+ θ) dx

= −πG(θ) +
1

2

∫ 2π

0

G(x) dx,

where the penultimate equality follows by integration by parts and

1

2

∫ 2π

0

G(x) dx =

[
G(x)

x− π

2

]2π
0

−
∫ 2π

0

g(x)
x− π

2
dx

=

∫ 2π

0

g(x)
π − x

2
dx

=

∞∑
n=1

1

n

∫ 2π

0

g(x) sinnx dx =

∞∑
n=1

1

n
πλn.
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Thus

G(θ) =

∞∑
n=1

1

n
λn −

∞∑
n=1

1

n
λn cosnθ,

which implies the conclusion. □

Proof of Theorem 3.18. We first prove that (3) implies (2) then we prove (1) implies (3). This will

conclude the proof of the theorem since it is well known that (2) implies (1).

Suppose that we have (3). Then for any ϵ > 0 there exists a positive integer N such that

nλn < ϵ if n ≥ N . For p ≥ N and q > p by Lemma 3.4 we have
∣∣∣∣∣

q∑
n=p

λn sinnθ

∣∣∣∣∣ ≤
λp

| sin 1
2θ|

≤ λp
π

θ

for 0 < θ ≤ π. Letting q → ∞, if θ ∈ [1/p, π], we see that

(3.15)

∣∣∣∣∣
∞∑

n=p

λn sinnθ

∣∣∣∣∣ ≤ πpλp ≤ πϵ.

If θ < 1/p and 0 < θ ≤ π, let p ≤ q ≤ 1/θ < q + 1. Then using (3.15) we have
∣∣∣∣∣
∞∑

n=p

λn sinnθ

∣∣∣∣∣ ≤
∣∣∣∣∣

q∑
n=p

λn sinnθ

∣∣∣∣∣+
∣∣∣∣∣

∞∑
n=q+1

λn sinnθ

∣∣∣∣∣

≤
q∑

n=p

λnnθ + ϵπ ≤ ϵθq + ϵπ ≤ (1 + π)ϵ.

Since
∑∞

n=p λn sinnθ = 0 for θ = 0, we have for θ ∈ [0, 1/p)

(3.16)

∣∣∣∣∣
∞∑

n=p

λn sinnθ

∣∣∣∣∣ ≤ (1 + π)ϵ

if p ≥ N . By (3.15) and (3.16) we see that for θ ∈ [0, π]
∣∣∣∣∣
∞∑

n=p

λn sinnθ

∣∣∣∣∣ ≤ (1 + π)ϵ

whenever p ≥ N , which implies that the series
∑∞

n=1 λn sinnθ is uniformly convergent on [0, π].

By this we see that
∑∞

n=1 λn sinnθ is uniformly convergent on [−π, π] since
∑∞

n=1 λn sinnθ is odd,

which implies (2) since
∑∞

n=1 λn sinnθ is 2π periodic.

We now prove that (1) implies (3). Suppose that g is continuous on [0, π]. Then g(θ) → g(0) = 0

as θ → 0. By Lemma 3.19 we have

lim
θ→0

1

θ

∫ θ

0

g(t) dt = lim
θ→0

∞∑
n=1

λn(1− cos(nθ))

nθ
.
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Thus

G(θ) =

∞∑
n=1

1

n
λn −

∞∑
n=1

1

n
λn cosnθ,

which implies the conclusion. □

Proof of Theorem 3.18. We first prove that (3) implies (2) then we prove (1) implies (3). This will

conclude the proof of the theorem since it is well known that (2) implies (1).

Suppose that we have (3). Then for any ϵ > 0 there exists a positive integer N such that

nλn < ϵ if n ≥ N . For p ≥ N and q > p by Lemma 3.4 we have
∣∣∣∣∣

q∑
n=p

λn sinnθ

∣∣∣∣∣ ≤
λp

| sin 1
2θ|

≤ λp
π

θ

for 0 < θ ≤ π. Letting q → ∞, if θ ∈ [1/p, π], we see that

(3.15)

∣∣∣∣∣
∞∑

n=p

λn sinnθ

∣∣∣∣∣ ≤ πpλp ≤ πϵ.

If θ < 1/p and 0 < θ ≤ π, let p ≤ q ≤ 1/θ < q + 1. Then using (3.15) we have
∣∣∣∣∣
∞∑

n=p

λn sinnθ

∣∣∣∣∣ ≤
∣∣∣∣∣

q∑
n=p

λn sinnθ

∣∣∣∣∣+
∣∣∣∣∣

∞∑
n=q+1

λn sinnθ

∣∣∣∣∣

≤
q∑

n=p

λnnθ + ϵπ ≤ ϵθq + ϵπ ≤ (1 + π)ϵ.

Since
∑∞

n=p λn sinnθ = 0 for θ = 0, we have for θ ∈ [0, 1/p)

(3.16)

∣∣∣∣∣
∞∑

n=p

λn sinnθ

∣∣∣∣∣ ≤ (1 + π)ϵ

if p ≥ N . By (3.15) and (3.16) we see that for θ ∈ [0, π]
∣∣∣∣∣
∞∑

n=p

λn sinnθ

∣∣∣∣∣ ≤ (1 + π)ϵ

whenever p ≥ N , which implies that the series
∑∞

n=1 λn sinnθ is uniformly convergent on [0, π].

By this we see that
∑∞

n=1 λn sinnθ is uniformly convergent on [−π, π] since
∑∞

n=1 λn sinnθ is odd,

which implies (2) since
∑∞

n=1 λn sinnθ is 2π periodic.

We now prove that (1) implies (3). Suppose that g is continuous on [0, π]. Then g(θ) → g(0) = 0

as θ → 0. By Lemma 3.19 we have

lim
θ→0

1

θ

∫ θ

0

g(t) dt = lim
θ→0

∞∑
n=1

λn(1− cos(nθ))

nθ
.

Taking θ = π/(2k) and using the inequality: 1 − cosx ≥ (2/π2)x2, 0 ≤ x ≤ π, we see that

0 = lim
k→∞

2k∑
n=k

λn(1− cos(nπ/(2k)))

nπ/(2k)
≥ lim

k→∞

2k

π
λ2k

2

π2

2k∑
n=k

n
π2

(2k)2

≥ lim
k→∞

2k

π
λ2k

2

π2

π2

(2k)2
k2

= lim
k→∞

k

π
λ2k.

It follows that limk→∞ 2kλ2k = 0, which also implies that limk→∞(2k + 1)λ2k+1 = 0 on account

of the monotonicity of λk. Altogether, we have limk→∞ kλk = 0. □

4. Characterization of Fourier coefficients for continuous functions of bounded

variation

A variant of the following result will be used in proving Theorem 4.6 below.

Theorem 4.1. Let {Ak}∞k=1 be a sequence of non-negative real numbers such that Ak ≤ 1/k for

all k ∈ N. Then the following three conditions are equivalent:

(1)

lim
n→∞

n

∞∑
k=1

A2
k sin

2

(
kπ

2n

)
= 0,

(2)

lim
n→∞

1

n

n∑
k=1

k2A2
k = 0,

(3)

lim
n→∞

1

n

n∑
k=1

kAk = 0.

Proof. Part (2) implies part (3). We assume part (2). Then By the Schwarz inequality, we have

1

n

n∑
k=1

kAk ≤

(
1

n

n∑
k=1

k2A2
k

)1/2

→ 0 as n → ∞.

This implies part (3). Here we do not use the condition Ak ≤ 1/k.

Part (2) follows from part (3). Applying the condition Ak ≤ 1/k and using part (3), we see

that

1

n

n∑
k=1

k2A2
k ≤ 1

n

n∑
k=1

kAk → 0 as n → ∞,

which is part (2).
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Part (1) implies part (2). Using the inequality sin x ≥ (2/π)x, 0 ≤ x ≤ π/2, we see that

n

∞∑
k=1

A2
k sin

2

(
kπ

2n

)
≥ n

n∑
k=1

A2
k sin

2

(
kπ

2n

)
≥ n

n∑
k=1

A2
k

(
2

π

kπ

2n

)2

=
1

n

n∑
k=1

k2A2
k,

from which we see that part (1) implies part (2). Here we do not use the condition Ak ≤ 1/k.

Part (2) implies part (1). We write k = 2nm+ ℓ, 0 ≤ ℓ < 2n. Then

sin2
(
(2nm+ ℓ)π

2n

)
= sin2

(
mπ +

ℓ

2n
π

)
= sin2

(
ℓ

2n
π

)
.

Using this and the inequality, sin x ≤ x, x ≥ 0, we have, letting A0 = 0,

n
∞∑
k=1

A2
k sin

2

(
kπ

2n

)
= n

∞∑
m=0

2n−1∑
ℓ=0

A2
2mn+ℓ sin

2

(
ℓπ

2n

)

≤ (π/2)2n

∞∑
m=0

2n−1∑
ℓ=0

A2
2mn+ℓ

(
ℓ

n

)2

≤ (π/2)2
1

n

∞∑
m=0

2n−1∑
ℓ=0

ℓ2A2
2mn+ℓ

≤ (π/2)2
∞∑

m=0

pm,n,

where

pm,n =
1

n

2n−1∑
ℓ=0

ℓ2A2
2mn+ℓ.

We see that

pm,n ≤ 1

n

2n−1∑
ℓ=0

(2mn+ ℓ)2A2
2mn+ℓ

≤ 1

n

2(m+1)n∑
k=2mn

k2A2
k

≤ 1

n

2(m+1)n∑
k=1

k2A2
k

≤ 2n(m+ 1)

n

1

2n(m+ 1)

2(m+1)n∑
k=1

k2A2
k → 0 (n → ∞),
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Part (1) implies part (2). Using the inequality sin x ≥ (2/π)x, 0 ≤ x ≤ π/2, we see that

n

∞∑
k=1

A2
k sin

2

(
kπ

2n

)
≥ n

n∑
k=1

A2
k sin

2

(
kπ

2n

)
≥ n

n∑
k=1

A2
k

(
2

π

kπ

2n

)2

=
1

n

n∑
k=1

k2A2
k,

from which we see that part (1) implies part (2). Here we do not use the condition Ak ≤ 1/k.

Part (2) implies part (1). We write k = 2nm+ ℓ, 0 ≤ ℓ < 2n. Then

sin2
(
(2nm+ ℓ)π

2n

)
= sin2

(
mπ +

ℓ

2n
π

)
= sin2

(
ℓ

2n
π

)
.

Using this and the inequality, sin x ≤ x, x ≥ 0, we have, letting A0 = 0,

n
∞∑
k=1

A2
k sin

2

(
kπ

2n

)
= n

∞∑
m=0

2n−1∑
ℓ=0

A2
2mn+ℓ sin

2

(
ℓπ

2n

)

≤ (π/2)2n

∞∑
m=0

2n−1∑
ℓ=0

A2
2mn+ℓ

(
ℓ

n

)2

≤ (π/2)2
1

n

∞∑
m=0

2n−1∑
ℓ=0

ℓ2A2
2mn+ℓ

≤ (π/2)2
∞∑

m=0

pm,n,

where

pm,n =
1

n

2n−1∑
ℓ=0

ℓ2A2
2mn+ℓ.

We see that

pm,n ≤ 1

n

2n−1∑
ℓ=0

(2mn+ ℓ)2A2
2mn+ℓ

≤ 1

n

2(m+1)n∑
k=2mn

k2A2
k

≤ 1

n

2(m+1)n∑
k=1

k2A2
k

≤ 2n(m+ 1)

n

1

2n(m+ 1)

2(m+1)n∑
k=1

k2A2
k → 0 (n → ∞),

where the convergence to 0 in the last line follows if we assume part (2). Also, using the inequality

Ak ≤ 1/k, we have

pm,n ≤ 1

n

2n−1∑
ℓ=1

ℓ2(2mn+ ℓ)−2 ≤ C(m+ 1)−2

for m ≥ 0. Here C is a constant independent of n. Thus by the dominated convergence theorem

of Lebesgue we have

lim
n→∞

∞∑
m=0

pm,n = 0.

This implies part (1) under the condition in part (2). □

Definition 4.2. Let f : [0, 2π] → C. Let P = {xj}mj=0 with 0 = x0 < x1 < · · · < xm = 2π be a

partition of the interval [0, 2π]. We say that f is a function of bounded variation if

∥f∥BV ([0,2π]) = sup
P

m∑
j=1

|f(xj)− f(xj−1)| < ∞,

where the supremum is taken over all partitions P of [0, 2π]. (See [1, p.97].)

For a integrable function f and k ∈ Z, let

(4.1) Ck(f) =
1

2π

∫ 2π

0

f(t)e−ikt dt

be the Fourier coefficient.

Theorem 4.3. If f is a 2π periodic function on R which is of bounded variation on [0, 2π], then

for all k ∈ Z \ {0} we have

|Ck(f)| ≤
1

4|k|
∥f∥BV ([0,2π]).

Proof. Let k be a positive integer. We easily see that

2|Ck(f)| =
∣∣∣∣
1

2π

∫ 2π

0

(f(t+ (j − 1)π/k)− f(t+ jπ/k)) e−ikt dt

∣∣∣∣ , 1 ≤ j ≤ 2k.

Thus, summing over j, 1 ≤ j ≤ 2k, we have

4k|Ck(f)| ≤
1

2π

∫ 2π

0

2k∑
j=1

|f(t+ (j − 1)π/k)− f(t+ jπ/k)| dt ≤ ∥f∥BV ([0,2π]),

which implies that |Ck(f)| ≤ 1
4k∥f∥BV ([0,2π]). The result for the case k < 0 follows from this if we

observe that C−k(f) = Ck(f̃) and ∥f̃∥BV ([0,2π]) = ∥f∥BV ([0,2π]) with f̃(x) = f(−x). □
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It is known that there exists a continuous function f of bounded variation with period 2π for

which we do not have |kCk(f)| → 0 (|k| → ∞). Cantor’s function can be used to construct an

example (see [2, p.27]). On the other hand we have the following results (Theorems 4.4, 4.6) of

Wiener (see [2, pp. 27-28] and also [5, p. 153, p. 196]).

Theorem 4.4. Let f be a 2π-periodic function on R. Suppose that f is of bounded variation on

[0, 2π]. Then we have the following.

(1) If f is continuous on R, then

(4.2) lim
n→∞

n

∞∑
k=−∞

|Ck(f)|2 sin2
(
kπ

2n

)
= 0,

where Ck(f) is as in (4.1).

(2) If (4.2) holds, then f(x+ 0) = f(x− 0) for all x ∈ R; and hence the discontinuities of f

should be of the first kind and removable.

Let

(4.3) Fn(x) =

2n∑
m=1

∣∣∣∣f
(
x+

m

n
π
)
− f

(
x+

m− 1

n
π

)∣∣∣∣
2

.

To prove Theorem 4.4 we need the following.

Lemma 4.5. Let Ck(f) be as in (4.1) and Fn as in (4.3). Then
∫ 2π

0

|Fn(x)| dx = 16πn

∞∑
k=−∞

|Ck(f)|2 sin2
(
kπ

2n

)
.

Proof. We have
∫ 2π

0

Fn(x) dx =

2n∑
m=1

∫ 2π

0

∣∣∣∣f
(
x+

m

n
π
)
− f

(
x+

m− 1

n
π

)∣∣∣∣
2

dx

= 2n

∫ 2π

0

∣∣∣∣f
(
x+

1

2n
π

)
− f

(
x− 1

2n
π

)∣∣∣∣
2

dx

= 4πn

∞∑
k=−∞

|Cn,k|2,

where the last equality follows by the Parseval theorem (see [3, Theorem 11.40, p. 328]) with

Cn,k =
1

2π

∫ 2π

0

(
f
(
x+

π

2n

)
− f

(
x− π

2n

))
e−ikx dx

= Ck(f)
(
eikπ/(2n) − e−ikπ/(2n)

)

= Ck(f)2i sin(kπ/(2n)).
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It is known that there exists a continuous function f of bounded variation with period 2π for

which we do not have |kCk(f)| → 0 (|k| → ∞). Cantor’s function can be used to construct an

example (see [2, p.27]). On the other hand we have the following results (Theorems 4.4, 4.6) of

Wiener (see [2, pp. 27-28] and also [5, p. 153, p. 196]).

Theorem 4.4. Let f be a 2π-periodic function on R. Suppose that f is of bounded variation on

[0, 2π]. Then we have the following.

(1) If f is continuous on R, then

(4.2) lim
n→∞

n

∞∑
k=−∞

|Ck(f)|2 sin2
(
kπ

2n

)
= 0,

where Ck(f) is as in (4.1).

(2) If (4.2) holds, then f(x+ 0) = f(x− 0) for all x ∈ R; and hence the discontinuities of f

should be of the first kind and removable.

Let

(4.3) Fn(x) =

2n∑
m=1

∣∣∣∣f
(
x+

m

n
π
)
− f

(
x+

m− 1

n
π

)∣∣∣∣
2

.

To prove Theorem 4.4 we need the following.

Lemma 4.5. Let Ck(f) be as in (4.1) and Fn as in (4.3). Then
∫ 2π

0

|Fn(x)| dx = 16πn

∞∑
k=−∞

|Ck(f)|2 sin2
(
kπ

2n

)
.

Proof. We have
∫ 2π

0

Fn(x) dx =

2n∑
m=1

∫ 2π

0

∣∣∣∣f
(
x+

m

n
π
)
− f

(
x+

m− 1

n
π

)∣∣∣∣
2

dx

= 2n

∫ 2π

0

∣∣∣∣f
(
x+

1

2n
π

)
− f

(
x− 1

2n
π

)∣∣∣∣
2

dx

= 4πn

∞∑
k=−∞

|Cn,k|2,

where the last equality follows by the Parseval theorem (see [3, Theorem 11.40, p. 328]) with

Cn,k =
1

2π

∫ 2π

0

(
f
(
x+

π

2n

)
− f

(
x− π

2n

))
e−ikx dx

= Ck(f)
(
eikπ/(2n) − e−ikπ/(2n)

)

= Ck(f)2i sin(kπ/(2n)).

Collecting the results, we get the conclusion of the lemma. □

Proof of Theorem 4.4. Let

ωf (τ) = sup
x∈R,|y|≤τ

|f(x+ y)− f(x)|.

Then Fn(x) ≤ ωf (π/n)∥f∥BV ([0,2π]). Thus, if f is continuous, Fn(x) → 0 uniformly, so
∫ 2π

0
Fn(x) dx →

0 as n → ∞. This implies part (1) by Lemma 4.5.

Proof of part (2). Since f is 2π-periodic, we may assume that x ∈ [0, 2π] in the conclusion.

Suppose that there exists x0 ∈ [0, 2π] such that

|f(x0 + 0)− f(x0 − 0)| > d for some d > 0.

Then there exists δ > 0 such that if |y−x0| < δ, |z−x0| < δ and y < x0 < z, then |f(z)− f(y)| >
d/2. Suppose that 2π/n < δ. For x ∈ [0, 2π] we have either

(i) x0 ∈ [x, x+ 2π]

or

(ii) x0 + 2π ∈ [x, x+ 2π].

First we consider the case (i). We deal with the following three cases separately:

(a) x0 ∈ (x+ (m0 − 1)π/n, x+ (m0 + 1)π/n) for some 1 ≤ m0 ≤ 2n− 1;

(b) x0 ∈ (x− π/n, x+ π/n);

(c) x0 ∈ (x+ (2n− 1)π/n, x+ (2n+ 1)π/n).

We now handle the case (a). We have |f(x+(m0+1)π/n)− f(x+(m0−1)π/n)| > d/2 and hence

|f(x+m0π/n)− f(x+ (m0 − 1)π/n)| > d/4

or

|f(x+ (m0 + 1)π/n)− f(x+m0π/n)| > d/4.

Next, we treat the case (b). Then |f(x+ π/n)− f(x− π/n)| > d/2, which implies that we have

|f(x)− f(x− π/n)| > d/4

or

|f(x+ π/n)− f(x)| > d/4.

Since f is 2π-periodic, it follows that

|f(x+ (2nπ)/n)− f(x+ (2n− 1)π/n)| > d/4

or

|f(x+ π/n)− f(x)| > d/4.
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Finally, in the case (c) we have |f(x+ (2n+ 1)π/n)− f(x+ (2n− 1)π/n)| > d/2 and so

|f(x+ (2n+ 1)π/n)− f(x+ (2nπ)/n)| > d/4

or

|f(x+ (2nπ)/n)− f(x+ (2n− 1)π/n)| > d/4,

which implies that

|f(x+ π/n)− f(x)| > d/4

or

|f(x+ (2nπ)/n)− f(x+ (2n− 1)π/n)| > d/4.

Collecting results in the cases (a), (b) and (c), we see that Fn(x) ≥ (d/4)2 for all x ∈ [0, 2π] and

n > 2π/δ in the case (i).

The same holds also in the case (ii). This can be seen as follows. Let y0 = x0 + 2π. Then

y0 ∈ [x, x+ 2π] and

|f(y0 + 0)− f(y0 − 0)| = |f(x0 + 0)− f(x0 − 0)| > d.

Thus we can apply the arguments in the case (i) with y0 in place of x0.

Combining results, we have Fn(x) ≥ (d/4)2 for all x ∈ [0, 2π] and n > 2π/δ. Therefore, if

∥Fn∥1 → 0 as n → ∞, which holds if we have (4.2) by Lemma 4.5, then we have f(x+0) = f(x−0)

for all x. This completes the proof of part (2). □

By Theorems 4.3, 4.4 and by applying Theorem 4.1 suitably, we have the following.

Theorem 4.6. Let f be a 2π-periodic function on R which is of bounded variation on [0, 2π].

Then we have the following.

(1) If f is continuous on R, then we have

(4.4) lim
n→∞

1

n

n∑
k=−n

|kCk(f)| = 0,

where Ck(f) is as in (4.1).

(2) Suppose that (4.4) holds. Then f(x+ 0) = f(x− 0) for all x ∈ R.

We note that (4.4) holds if lim|k|→∞ |kCk(f)| = 0.

Remark 4.7. Let f : R → R be 2π periodic and such that

f(x) =

{
1, x = 0,

0, x ∈ [−π, π] \ 0.
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Finally, in the case (c) we have |f(x+ (2n+ 1)π/n)− f(x+ (2n− 1)π/n)| > d/2 and so

|f(x+ (2n+ 1)π/n)− f(x+ (2nπ)/n)| > d/4

or

|f(x+ (2nπ)/n)− f(x+ (2n− 1)π/n)| > d/4,

which implies that

|f(x+ π/n)− f(x)| > d/4

or

|f(x+ (2nπ)/n)− f(x+ (2n− 1)π/n)| > d/4.

Collecting results in the cases (a), (b) and (c), we see that Fn(x) ≥ (d/4)2 for all x ∈ [0, 2π] and

n > 2π/δ in the case (i).

The same holds also in the case (ii). This can be seen as follows. Let y0 = x0 + 2π. Then

y0 ∈ [x, x+ 2π] and

|f(y0 + 0)− f(y0 − 0)| = |f(x0 + 0)− f(x0 − 0)| > d.

Thus we can apply the arguments in the case (i) with y0 in place of x0.

Combining results, we have Fn(x) ≥ (d/4)2 for all x ∈ [0, 2π] and n > 2π/δ. Therefore, if

∥Fn∥1 → 0 as n → ∞, which holds if we have (4.2) by Lemma 4.5, then we have f(x+0) = f(x−0)

for all x. This completes the proof of part (2). □

By Theorems 4.3, 4.4 and by applying Theorem 4.1 suitably, we have the following.

Theorem 4.6. Let f be a 2π-periodic function on R which is of bounded variation on [0, 2π].

Then we have the following.

(1) If f is continuous on R, then we have

(4.4) lim
n→∞

1

n

n∑
k=−n

|kCk(f)| = 0,

where Ck(f) is as in (4.1).

(2) Suppose that (4.4) holds. Then f(x+ 0) = f(x− 0) for all x ∈ R.

We note that (4.4) holds if lim|k|→∞ |kCk(f)| = 0.

Remark 4.7. Let f : R → R be 2π periodic and such that

f(x) =

{
1, x = 0,

0, x ∈ [−π, π] \ 0.

Then f is of bounded variation and Ck(f) = 0 for all k ∈ Z and so we have (4.4), but f is not

continuous at x = 0.
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