Harmonic analysis with proofs

Shuichi Sato

ABSTRACT

We survey some results related to trigonometric series of one variable, which are basic and

classic in harmonic analysis. We give proofs for the results in detail.
1. INTRODUCTION

We review some basic, classic results in harmonic analysis. We focus on results related to
trigonometric series. Proofs will be given for the results in detail.

In Section 2, we shall recall the definitions of the Dirichlet kernels D, (z), the conjugate Dirichlet
kernels D,, (), the Fejér kernels K, (z) and the conjugate Fejér kernels K, (z) and we shall state
some formulae including those kernels.

We shall consider some special trigomometric series with decreasing positive coeflicients in

Section 3. Among other things, we shall prove that the series

is a Fourier series, while

is not a Fourier series.
In Section 4, we shall prove the characterization due to Wiener of Fourier coefficients of functions
of bounded variation with removable discontinuities.

In this note Z denotes the set of integers and N stands for the set of positive integers.
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2. SOME DEFINITIONS AND FORMULAE FOR TRIGONOMETRIC FUNCTIONS

Definition 2.1. The Dirichlet kernels D,,(x), n > 0, are defined as

1
Dn(x):§+cosx+0052x—|—-~-+cosnx, n>1; Do(z) = .
Definition 2.2. We define the conjugate Dirichlet kernels 5n(x), n >0, as

D, (z) =sinz +sin2z + - +sinnz, n>1; Dy(z) = 0.

Definition 2.3. The Fejér kernels K, (z), n > 0, are defined as

Knl) = ——= 3" Dy (@)
v=0

Definition 2.4. We define the conjugate Fejér kernels I?n(x), n >0, as

o) = - i > Dy()
v=0

Theorem 2.5. Letn > 1. We have
fao + Z Uy, COS T = Z D,(x)Aa, + a, Dy (2),

v=0

where Aa,, = a,, — a,41 for v > 0.

Theorem 2.6. Let n > 2. We see that

n—1 n—2
(2.1) ZD JAay, = > (m+ 1)K () A% + nkK, 1 (x)Aay 1,
m=0

where A%a,, = A(Aay) = Aty — Aami1 = Gm — Gms1 — (@il — Gmi2) = Gm — 20m 1 + Qmyo;

n—2

1 n
(2.2) 540 + Z Gy, COSNMET = Z (m + 1)K (2)A%a,, +nK, 1 (2)Ady_1 + a, Dy ().
m=1 m=0

Theorem 2.7. Let n > 2. We have

Zb Smmx—ZD YAb, + by, Dy ().

m=1
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Theorem 2.8. Let n > 3. We see that

(2.3) "z_:f)l,(x)Abl,: i(mﬂ) () A2y, + K1 (1) Aby 1
v=1 m=1
n n—2
(2.4) > by sinma = Z(m—i—l) m(2) A%y, + Ky (1) Abp_1 + by Dy ().

Proof of Theorem 2.5. Applying summation by parts arguments (see [3, Theorem 3.41, p.70]), we

have

1 - 1
00+ > amcosma = 00+ > am(Di(z) = D1 ()

m=1 m=1
f1a+naD(:c) iaD (x)
9 0 ) msm Lt md/m—1
n—1 n—1
= Z a,D,(z) + a,D,(x) — Z ay+1D,(x)
v=0 v=0

= Z D,(x)Aa, + a, Dy (x).
O

Proof of Theorem 2.6. Proof of (2.1). We note that D, = (v + 1)K, — vK,_; for v > 1, and
Do = KO Thus

n—1

ZD Aal,fKoAaoqLZ v+ 1)K, Aa,,fZVKl,_lAaV
v=1 v=1
n—2 n—2
= KoAag + Z (m+ D) K,Aap, +nK,y—1(z)Aap—1 — Z (m+ 1)K, Aap 1
m=1 m=0
n—2
= Z m+ 1)K, (2) A0, +nK, 1(x)Aay, ;.
m=0
This proves (2.1). The formula (2.2) follows from Theorem 2.5 and (2.1). O

Proof of Theorem 2.7. We note that sinma = Dy, () — Dy,_1 () for m > 1 and Do (x) = 0. Thus

Z by sinmax = Z by (Do (2) — D1 ()
= Zb D, ( Zbu+1D

—ZD )Ab,, + b, Dy, (). O
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Proof of Theorem 2.8. Proof of (2.3). We note that 51, = v+ 1)[~(,, — 1/[?1,,1 for v > 1, and
50 = [?0 =0. Thus

n—1 n—1 n—1
D, (z)Ab, = > v+ 1)K, Ab, — > vK,_1Ab,
v=1 v=1 v=1
n—2 ~ . n—2 "
= (M A 1)Kp Dby + 1Ky 1 (2)Aby 1 — Y (m+ 1)K Aby i
m=1 m=1
n—2

(m + 1)K (2) A%, + nEKpy_y (2)Abyy_1.
1

3
I

This completes the proof of (2.3). The equation (2.4) follows from Theorem 2.7 and (2.3). O

For the Dirichlet kernels and the conjugate Dirichlet kernels, we have the following formulae.

Theorem 2.9 (Zygmund [6, p. 2]). Let n > 0. We have

sin(n + 1)z
1

2sin 5T

D, (z) =

Proof. The proof is needed only for the case n > 1. We express 2sin %an(:r) by a telescoping

series and see that
1 " 1 1 - 1 1
sin 3% + Vil 2sin gTcosyr = sin 5% + UE:I <sin(1/ + i)x —sin(v — 2)1:)

=sin(n + =)z,

NN

which implies the conclusion. O

Theorem 2.10 (Zygmund [6, p. 2]). Let n > 0. We have

B () = cos 3x — cos(n + %)x

in 4
2sm2a?

Proof. We may assume that n > 1. Similarly to the proof of Theorem 2.9, we have

n

; 2sin 2% sinvey = Z (cos(u - i)x — cos(v + 2)33)

v=1
= cos 3 —cos(n + )
—COSQZ‘ cos(n B Z,

from which we deduce the conclusion. O

Applying Theorem 2.9, we have the following.
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Theorem 2.11 (Zygmund [6, p. 88]). Forn >0 we have

n

1 < 1 sin(v + 3)t
Kalt) = ooy D00l = oy - S5
v=0 v=0

1 1—cos(n+ 1)t
n+1 (2sin )2
2 {siné(n—i—l)t}2

n+1 QSiD%f

Proof. The second equality follows from Theorem 2.9. We note that

n

.. 1 1
ZO 2sin it sin(v + i)t = Z_:O (cosvt — cos(v + 1)t)
=1—cos(n+1)t,
which implies the third equality. The last equality follows by the formula 1—cos§ = 2sin?(/2). O

Using Theorem 2.10, we have the following.

Theorem 2.12 (Zygmund [6, p. 91]). Let n > 0. Then

~ I &= 1 1 1 ~cos(v+ 2)t
Kn(t):n+1;Dy(t):§cot§t—n+lyzo —

1 1 si 1)t
= —cot -t — sm@ —t ) .
2 2 n+1 (2singt)?

Proof. The second equality follows from Theorem 2.10. We see that

Vz::o 2sin §t cos(v + i)t = ;::0 (sin(v + 1)t — sinvt)
= sin(n + 1)t,

which implies the last equality. U

3. SPECIAL TRIGOMOMETRIC SERIES WITH DECREASING POSITIVE COEFFICIENTS

For results in this section we refer to [2, ITI].

‘We consider the series of the form
(3.1) > Ane™,
n=1

where A, > 0, A, > A\p4q for all n > 1.
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Theorem 3.1. Let the series Y A\,e'™® be as in (3.1). We further assume that A, — 0 asn — 0o.
Then the series is uniformly convergent in any subset I of R such that dist(I,27Z) > 0, where
217 = {2km : k € Z} and dist(E, F) = infycp yer |z — y| for E,F CR.

Corollary 3.2. Let I be a subset of R as in Theorem 3.1. Then each of the two series

oo . o0
Z sin nf Z cos nb
n n

n=1 n=1

converges uniformly on I.
This follows from Theorem 3.1 with A\, = 1/n.

To prove Theorem 3.1 we need the following lemmas.

Lemma 3.3. Let 0<p<g¢q,p,q € Z and § € R\ 2nZ. Then

q
E ezne <
n=p

= |sinig|’

Lemma 3.4. Let 0 <p<gq,p,q€Z and A\, > 0, A\, > A\p11 forn >0,n € Z. Then

Ap
\sm 1t9|

ne

for 6 € R\ 277Z.

Proof of Lemma 3.3. Summing up a geometric series, we have
a a-p i(g—p+1)0
inf __ _ipl ing _ 'Lp9 1—e : )
E e =e E e -
1— et
n=p n=0

We note that
: 0
|1 —e?? = (1 — cosh)? +sin? 0 = 2(1 — cos §) = 4sin? 7

Thus
q
3 eine 2 __1
= =1 — e |sin%9|
O
Proof of Lemma 3.4. Let
Un = Z e,
n=p
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Then by Lemma 3.3, |U,,| < 1/|sin(6/2)|. Applying summation by parts, we write
q
Z M€ = XUp + Api1(Uppr = Up) + -+ + Ag(Uy — Uy 1)

=U ( p+1) + Up+1( p+1 — )‘p+2) +ot Uq—l(Aq—l - /\q) + )‘qu'

Thus, using |U,,,| < 1/|sin(0/2)] and A, > A\jg1 > 0, we see that

q
E 1n9

71(()‘ )‘p+1)+()‘p+1 _)‘p+2)+"'+()‘q71 _)‘q)"‘)‘q)
| sin 50|

_ 1
B |sin 16|

O

Proof of Theorem 3.1. Let 6 = dist(I,2xZ). Then, using the inequality sinf > (2/7)0, 0 < 6 <
/2, we see that

1

3.2 sup ————
(3:2) QEI[)‘SiH%9|

< w5 L

Given € > 0, there exists pg € N such that \,,mé~ < e. Thus, if py <p < g and 6 € I, by Lemma

3.4 and (3.2) we have
a

, 1
A eln0 <
Z: " = |sind6|""
n=p
< )\pﬂ'571 < )\pumsfl <e€.
Therefore the series > \,e!™? is uniformly convergent on I by the Cauchy criterion. O

Theorem 3.5. Suppose that \,, >0, A\, > A\pt1 for alln > 1 and n\, < Cy for all n > 1 with a

constant Cy. Then the series Y, Apsinnb is boundedly convergent on R.

Corollary 3.6. The series Y ., n~*sinnf is boundedly convergent on R.

Proof of Theorem 3.5. Let Un(0) = 25:1 Ansinnf. We show that |[Uy(0)| < C for 6 € (0,7)
with a constant C' independent of 6 and N. This implies that the same holds for —m < 6 < 0 by
the oddness of the function Uy. Also, we have Uy(—7) = Uy (0) = Un(7) = 0. It follows that
|Un(0)| < C for 6 € [—m,w]. Thus the inequality is true for all § € R by the 27 periodicity of Uy,
which is what we need.

We split ZN, Apn sinnf into two pieces:

Un Z)\ san—ZA sinnf + Z Apsinnf = S7 + S5,  say.

n=M-+1

— 121 —



By Lemma 3.4, we see that

- AM41 Co 1

3.3 So| < .
(3:3) 9] < _|sin%9|_M+1|sin%9|

N
A 6in9
§ n

n=M+1

On the other hand, since |sinnf| < n|f|, we have

M
Z A, sinnf

n=1

If we choose M so that 6= < M < 6~! + 1, then by (3.4)

(3.4) [S1] =

M
<> Aanb < CoM.
n=1

Also, since sinz > (2/7)x (0 <z < 7/2), by (3.3)
1 1
- - - < )
10 _COM+1M7T_C()7T
Combining (3.5) and (3.6), we have |Un(0)| < Co(1 + 27), which completes the proof. O

(3.6) 12| < Co

Let A\, >0, n=0,1,2,..., A\, > A1, n >0, A,y = 0. We consider

() f(O) = %)\0 + i Ancosnd, (S) ¢(0) = i A sin né.
n=1

n=1
By Theorem 3.1, each of the two series is uniformly convergent on any compact subset of [—m, 7] \

{0} and so f, g are continuous on [—m, 7]\ {0}.

Theorem 3.7. Suppose that f € L*([—m,7]). Then the series in (C) is the Fourier series of f.
Also, if g € LY([—m, ), then the series in (S) is the Fourier series of g.

Proof. Suppose that g € L'([—,7]) and m € N. We note that the series Y -, A, sin nf sin mé
converges uniformly on [—m,7]. This can be seen through the Cauchy criterion by using Lemma
3.4 as follows:
A

< —F—|sinmb)|

| sin 50|

m|0]

SN e =

" (2/m)l(1/2)6]

where the second inequality follows from the inequalities |sinz| < |z| and |siny| > (2/7)|y|

q
Z Ap, sin nd sin mo

n=p

ApmiT,

(|y| < /2) Thus we can apply term by term inlegration and gel
— 0) sin E n— inn sin = Am
g m 2 n mé do

Tr —T — —Tr

for m € N. This is what we have claimed for (5).
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Next, let f € LY([—m,m]). As in the case of (S), the series

1 o0
5/\0(1 — cosmb) + Z An cosnf(1 — cosmb)

n=1
converges uniformly on [—, 7|, since
< —22|(1 - cosmb)|
| sin 50|
(1/2)(m0)>?
(2/m)[(1/2)6]

for m > 1, where for the second inequality the estimate |1 — cosx| < (1/2)2? is also used. Thus,

q
Z An cosnf(1 — cosmb)

n=p

<A = \,m?n0]/2,

integrating term by term, for m > 1 we have

1 (7 —, 1 [T
(3.7 — f(0)(1 — cosm@) d@zAO—ZAnf/ cosnf cosmldi = Ny — \p,.

7r

- n=1 -

Letting m — oo and using the Riemann-Lebesgue lemma (see [4, p.103]) and our assumption that
Am — 0, we have = [ f(0)df = \o. Using this in (3.7), we have L [7_ f(6) cosmfdf = Ay, for
all m > 1. This completes the proof. ]

Theorem 3.8. Let {\,} be as in the definition of the series (C') and (S). Set
— A
A= =.

(1) If A < oo, then f,g € L([—m,7]) and the series in (C) and (S) are Fourier series of f

and g, respectively.

(2) If g € L'([—m,7]) and the series in (S) is the Fourier series of g, then A < 0o.

Proof. Proof of part (1). Let Ay, = 22:1 An. Then

o) Ak B o 1 k
kz:‘:k:(k:—i-l) *;k(k+1);“
>

1
An Z k(k+1)

1 k=n

n

=A.

Let f and g be as in (C) and (S) and define h = f 4+ ig. Let k satisfy n/(k+ 1) < 0 < 7/k, for
0 € (0, 7). We write

&S] k—1 [eS)
1 . 1 . )
h = 5)\0 + § :)\nezne _ 5)\0 + E )\nezm‘) 4 E )\nem9
n=1 n=1 n=~k
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and by Lemma 3.4 we see that

1 k—1
|M<M+ZA+

n=1

g o w/k
I1(6)] db = / ()] do
A Z 7/(k+1)

A 1
wg M+m+%fgim+m+w+nm

Thus

k=1
00 o] WAk
< A —
_E:QNﬂ‘kM“HJ)+§: -
k=1 k=1
(Ao +2A)

Thus, if A < oo, then f,g € L*([~m,n]). Therefore, Theorem 3.7 implies part (1).
Proof of part (2). Suppose that g € L*([—m, @) and A, = = [T g(6) sinm6 df. Then

a T N, sinmo
3.8 —m == 0 de.
(38) > [ )3 =
Since Y >0 sinmé ma converges boundedly by Theorem 3.5, letting N — oo in (3.8), we have
> A g >, sinmb
— == 0 do .
P =5 DIEUEE

Here we recall some results on numerical series.

Lemma 3.9. Let {v,}72, be a sequence of complex numbers. Let Av, = vy, — vpq1 and A2y, =
A(Avy), n > 0.
(1) If vy, — 0, then > Av, = vy.
(2) If nv, — 0 and either Y o~ qv, or >.o- (n + 1)Av, is convergent, then Y .~ v, =
S o(n+1)Av,.
(3) If vy > vpt1, v, >0 forn >0 and 307 v, < 00, then nv, — 0.
(4) If v, — 0 and {v,} is convex, which means that A%v, > 0 for n > 0, then Av, > 0,
n >0, nAv, — 0 and

o0

(3.9) Z(n + 1A Z Av, = vp.

n=0

Proof. Proof of part (1). We see that Zﬁ;o Av, = vg — vng1- So letting N — oo, we get the

conclusion.
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Proof of part (2). We note that

N N+1

N
Z(n—Fl)Avn:Zn—I—l van Zvn— N+ Doyga,
n=0

n=0
which implies the claim.

Proof of part (3). We have

n

ST o= (- /24 Do, 2 ((0/2) + Doy 2 (n/2)0, 2 0.

k=[n/2]
It follows that nv,, — 0.

Proof of part (4). Since {Awv,} is decreasing and converges to 0, we have Av, > 0. Since
v, — 0, by part (1) > Aw, is convergent. Thus by part (3) we see that nAv, — 0. Therefore
we can apply part (2) and have the first equality of (3.9); the second equality follows from part
(1). O

Theorem 3.10. Suppose that {\,} is convex. Then f in (C) is non-negative and integrable;

further the series in (C) is the Fourier series of f.
Proof. By (2.2) of Theorem 2.6, Theorem 2.9 and Theorem 2.11 we have for 0 < 6 < =

1 n
5)\0 + Z A cos mb

m=1

Z m+ 1)K (0) A2\ 4+ 1Ky 1(0) AN 1 4+ A Dy (6)

1 2 ) sin(n + 1)6
= m Z(l —cos(v+1)0)A%XN, + (1 —cosnl)AN,—1 | + )\nm.

Since \,, — 0 and A\,,_1 — 0 as n — oo, letting n — oo, we have
1 o0

() = Z(l —cos(v+1)0)A%)\,.

4 sin? 0

Obviously, f(#) > 0 and by [ K, (0)df = m/2, applying Lemma 3.9 (4), we have
/ f(0)do = (n/2) Z(u +1)A%N, = (7/2)Ao
v=0

Thus by Theorem 3.7 the series in (C') is the Fourier series of f. O

Corollary 3.11. We have the following results.
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(1) The series

is a Fourier series.

(2) The series

1s not a Fourier series.

Proof. Since the sequence {(log(2 + n))~1} is convex, by Theorem 3.10 we have part (1).

To prove part (2), let g(z) = Y7 sinnz/log(2 + n) (the series is convergent pointwise). We
recall the fact that Y - 1/(nlog(2 + n)) = oo. If there exists h € L'([—m,n]) such that the
series Y.~ sinnz/log(2 4+ n) is the Fourier series of h, then it is known that h = g. Thus
g € L*([-m,7]), which would imply by Theorem 3.8 (2) that > >~ 1/(nlog(2+ n)) < co. Thus

we reach a contradiction. This completes the proof of part (2). O

By Corollary 3.11 we can see that the conjugate function (the Hilbert transform) of an integrable
function need not be integrable. To confirm this it may be helpful to consult [2, Theorem 76] where
a relation between the existence of the Hilbert transform and Abel summability of the conjugate
series is investigated.

The series in Corollary 3.2 can be expressed as follows.

Theorem 3.12. Let 0 < 0 < 2m. Then
1 1 0
(3.10) cosf + 3 cos(20) + 3 cos(30) 4 ... = —log <2 sin 2> ,

T—0
5

(3.11) sin 6 + % sin(20) + % sin(36) + ... =

Definition 3.13. Let w € C\ (—00,0]. Then we have a unique 6 € (—m,7) such that

w i0

wl

We define Argw = 6.
Definition 3.14. For x > 0, Inx is defined as

1
1nx:/ —dy.
1 Y
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Definition 3.15. For w € C\ (—00,0], logw is defined as
logw = In |w| + i Argw.

We note that logz = Inx for x > 0.

To prove Theorem 3.12 we need the following two lemmas.

Lemma 3.16. Let z € C, |2| <1, z# 1. Then

1 1.
flog(lfz):z+522+§z5+...,

where log is as in Definition 3.15 (we note that 1 — z € {w € C: |w — 1| < £} \ {0}).

Lemma 3.17. Let T : (—xw/2,7/2) — R be the bijection defined by T = tan |(—7n/2,7/2) (the
restriction of tan to (—m/2,7/2)). Suppose that z = x + iy, x = Rez > 0. Then

Argz=T""! (%),

where T~! : R — (—7/2,7/2) is the inverse mapping of T.

Proof of Lemma 3.16. We use the equation

1 n+1
f—(l—i-x—i-acz—i- -+x”):17x, 0<z<l1
Integration of both sides gives
1 1 T oyntl
7d Tl T gntly — d
/ Yy — +2x+ +n+1x ) ; 1_yy

for 0 <x < 1. By changmg variables and Definition 3.14, we see that

/ dy——/ll_x1dy:—ln(1—m):—log(1—x).

Yy
Thus
1 1 I 11
—1 1— _ -2 - .n+tl < / n+1d
‘ og(l =) = (w4 327t Tmqa™ ) < g Y l—zn+2
Letting n — oo, we see that
1 1
(3.12) —log(l—x):x+§x2+--~+fx"+..., 0<z<l
n

Let
F(z)=z+ S
Z)=z+—z"4 -+ =2"+...
2 n
for |z| < 1. Then F is holomorphic in |z| < 1 and it is known that —log(1 — z) is also holomorphic

in |z| < 1. Thus by the uniqueness of analytic continuation and (3.12), we have —log(1—z) = F(z)
for |z| < 1.
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The series defining F(z) is also convergent if |z] = 1 and z # 1 (see Corollary 3.2 and also [3,
Theorem 3.44, Chap. 3]). Thus by Abel’s theorem (see [3, Theorem 8.2, Chap. 8]), if z = €%,
0 < 0 < 27, we can define F(e") by continuity as

F(e'?) = r—}ill,?<1 F(re?) =¢" + %ezie +- 4 %e’”ﬂ +.
Since —log(1 — z) = F(z) for |2| < 1 and —log(1 — 2) is continuous at z = e, 0 < § < 2, we
have F(e??) = —log(1 — ) for 0 < § < 2. This completes the proof of Lemma 3.16. O

Proof of Lemma 3.17. We have —7/2 < Argz < m/2, since Rez > 0. If Argz = 6, by Definition
3.13 we have |z| 71z = € = cos @ + isin @, which can be rewritten as
L . Y
+1
/1‘2 + y2 /$2 + y2
It follows that tan# = sinf/cosf = y/x. Since —7w/2 < 0 < 7/2, we have tanf = T'(0). Thus
T(0) = y/x and hence Argz = 0 = T~ (y/z). O

= cosf + isinf.

Proof of Theorem 3.12. Let z = €' with 0 < # < 2r. Then by Lemma 3.16 we see that

_ _ 0 iy cosnf = sinnd
(log|1 — €| +iArg(l—e ))_Z _Z ZZ —

n=1 n=1

ni6

Comparing real and imaginary parts, we have

(3.13) “log|l — €| = Z cosnf.
=\ sin nt9
(3.14) — Arg(1 — € Z
n=1

We note that
|1 — €% = (1 — cosh)? +sin? 0 = 2(1 — cos §) = 4sin? g
Using this in (3.13), we have (3.10).
Next, since Re(1—¢?) > 0 and 1—e? = 1 —cos#—isinf, by Lemma 3.17 we have Arg(1—e'?) =
T~ (—sin@/(1 — cosf)). We note that
0 0

sin 6 2sin § cos § cos 5 sin(Z — &) (07r>
— = — = — = — =tan | —— .
_ 2 0 in @ ™ _ 8
1 —cos® 2sin sin § cos(5 — 3) 2

Since 0 < § < 27, we have —7/2 < (0 —7)/2 < w/2. Thus tan(f —m)/2 = T((0 —7)/2). Therefore

1 _sind I 0—m\ .4 0—m\ O0-—m7
T <lcos0>_T <tan 5 )-T o ( 5 >_ 5

Thus we have Arg(1 — e?) = (6 — 7)/2. Applying this in (3.14), we have (3.11). This completes
the proof of Theorem 3.12. 0

|
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For the continuity of the function g in (S) we have the following result.

Theorem 3.18. Let g(0) = Y77, A\, sin(nf) be as in (S); we recall that the series is convergent

n=1

for every 8 € R. Then the following three statements are equivalent.

(1) The function g is continuous on [0, 27].
(2) The series Y .~ Ansin(nd) is uniformly convergent on [0,27].
(3) limy,—y 00 A, = 0.

Lemma 3.19. We consider g(0) = Y.~ A, sin(nf) as in (S). Suppose that g € L*([0,27]). Then

/ t)dt = Z/)\smnt :iw.

n=1 n=1

Proof. We note that
2m 2m
/ g(x 4 0) sinnz dx = / g(x)sinn(x — 0) dx
0 0

2m 2
= cosnf / g(z) sinnx dr — sin n&/ g(z) cosnz dx
0 0
=T\, cosnb,

where the last equality follows from Theorem 3.7. Let G(x fo t)dt. Then G is 27 periodic,
which can be seen from G(z + 27) — G(z) = fw+27r g(t )dt = 0 "g(t)dt = 0. Since the series

x

>0, n~tsinnz is boundedly convergent to (m — z)/2 by Corollary 3.6 and (3.11), we have

=1 [ 2 = sinnx
— 0) si dx = 0 d
;”/0 g(x + 0) sinnz dx / glx + )Z ——dz

0 n=1

27 _
=/ gz +0)"
0
27

27
- 1
:[G(m—&—&)WQx] +5 [ Gla+)de
0 0

xdw

1 2m
=—7G(0) + = G(x)dx,
2 Jo
where the penultimate equality follows by integration by parts and

1 2

5| G@de= [G(x)ac;ﬂrﬂ—/o%g(m)xgﬁdw

0 0

oo

o 1 27 ] 1
= Z ﬁ/ g(z) sinnz dx = Z ETFA”.

1 0 n=1
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o0 1 o0

1
G(0) = —Ap — —\,, cosnb,
n n
which implies the conclusion. O

Proof of Theorem 3.18. We first prove that (3) implies (2) then we prove (1) implies (3). This will
conclude the proof of the theorem since it is well known that (2) implies (1).

Suppose that we have (3). Then for any ¢ > 0 there exists a positive integer N such that
n\, < eif n > N. For p > N and ¢ > p by Lemma 3.4 we have

for 0 < 6 < 7. Letting ¢ — oo, if 6 € [1/p, 7|, we see that

i Ay, sin nf

n=p

Ifo<1l/pand 0 <0 <m,let p<qg<1/0 < g+ 1. Then using (3.15) we have

i A, sin nb i Ay, sin né i A\, sin nb
=p n=p

n=q+1
q

< Z)\nnﬂ—!—eﬂ <elg+er < (1+me.

n=p

(3.15) < mpA, < Te.

<

+

Since Z;:O:p Apsinn® = 0 for = 0, we have for 6 € [0,1/p)
(3.16) Z/\n sinnf| < (14 7)e
n=p

it p> N. By (3.15) and (3.16) we see that for 6 € [0, 7]

Z Ansinnd| < (14 m)e
n=p

whenever p > N, which implies that the series EZOZI An sinnd is uniformly convergent on [0, 7].
By this we see that > 7 | A, sinn# is uniformly convergent on [—m, 7] since >~ | A, sinnf is odd,
which implies (2) since >~ ; A, sinnf is 27 periodic.

We now prove that (1) implies (3). Suppose that g is continuous on [0, 71]. Then g(¢) — ¢(0) =0

as # — 0. By Lemma 3.19 we have
.1 = A (1 = cos(nh))
fm g [, 9@t =lim p  ————

0—0 0 1
n—
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Taking 6 = 7/(2k) and using the inequality: 1 — cosx > (2/7%)z?, 0 < x < 7, we see that

2k 2k
L An(1 — cos(nm/(2k))) . 2k 2 2
- JL“(}OZ: nr/(2k) 2 lm Aok ; " 2k)?

It follows that limy_, o 2kAox, = 0, which also implies that limy_ o (2k + 1)Aak11 = 0 on account

of the monotonicity of ;. Altogether, we have limy_, ., kA = 0.

4. CHARACTERIZATION OF FOURIER COEFFICIENTS FOR CONTINUOUS FUNCTIONS OF BOUNDED

VARIATION

A variant of the following result will be used in proving Theorem 4.6 below.

Theorem 4.1. Let {A,}72, be a sequence of non-negative real numbers such that Ay < 1/k for

all k € N. Then the following three conditions are equivalent:
(1)
lim nZA sin? il =0
n— o0 k on -
(2)
N R _
Jm, o 2 kAL =
k=1
(3)
lim — Z kA, =0.

n—oo M

Proof. Part (2) implies part (3). We assume part (2). Then By the Schwarz inequality, we have

1 n 1 n 1/2
nZkAk§<nZk2Ai> —0 asn — oo.
k=1 k=1

This implies part (3). Here we do not use the condition A < 1/k.

Part (2) follows from part (3). Applying the condition A; < 1/k and using part (3), we see

that

which is part (2).
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Part (1) implies part (2). Using the inequality sinz > (2/m)x, 0 < 2 < /2, we see that
nZA sin? >nZA sin? >n iAZ 2hm i
k k - P\ 2n

iy es

= 2
n

k=1

from which we see that part (1) implies part (2). Here we do not use the condition A, < 1/k.

Part (2) implies part (1). We write k = 2nm + ¢, 0 < ¢ < 2n. Then

sin? ((anWT) = sin? (mﬂ—i— €7r> = sin? <£7T) .
2n 2n 2n

Using this and the inequality, sinz < x, x > 0, we have, letting Ag = 0,

co 2n—1
nZAk sin () =n Z Z A2mn+e sin (52)

m=0 (=0
co 2n—1 2
SUCED IO I EY
m=0 (=0
1 oo 2n—
= 7T/2 ﬁ Z Z 2mn+€
=0 ¢=0
< (r/2)? me,m
m=0
where
2n 1
- Z Z2142mn-|-€
We see that
1 2n—
pm,n =~ E Z 2mn+€ 2mn+€
=0
| 2m+1n
e
k=2mn
1 2(m+1)n
<= k2 A2
2(m+1)n
2 1 1
< 2nim+1) Z E*AZ =0 (n— o0),

- n 2n(m + 1) —
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where the convergence to 0 in the last line follows if we assume part (2). Also, using the inequality

Ay, < 1/k, we have
1 2n—1
P < — > 2@2mn+ 072 < C(m+1)72
=1

for m > 0. Here C' is a constant independent of n. Thus by the dominated convergence theorem

of Lebesgue we have

oo
Jim, 2 pmn =0

m=0

This implies part (1) under the condition in part (2). O

Definition 4.2. Let f : [0,27] — C. Let P = {x;}]_ with 0 = z9 <21 < - <z, = 27 be a

partition of the interval [0, 27]. We say that f is a function of bounded variation if
1 £l BV (j0.24]) = St;pz |f(z5) = flzj-1)] < oo,
j=1
where the supremum is taken over all partitions P of [0, 27]. (See [1, p.97].)

For a integrable function f and k € Z, let

1 27

(4.1) Cul(f) = — f(t)e ™t dt

:27'(' 0

be the Fourier coefficient.

Theorem 4.3. If [ is a 2 periodic function on R which is of bounded variation on [0,27], then

for all k € Z\ {0} we have

1
1Ck(f)] < m”.f”BV([O,QTr])'
Proof. Let k be a positive integer. We easily see that

A =gz [ (4G =00/ = Fatgmfne a2 <2k

Thus, summing over j, 1 < 7 < 2k, we have

o2 2k

KO < 5o [ DU+ G = 1) /k) = £+ /)] de < | Flviony
j=1

which implies that [Ci(f)| < 72| /[l 5v(0,24])- The result for the case k < 0 follows from this if we
observe that C_(f) = Ci(f) and ||f||BV([O,27r]) = | fllBv(jo,2«]) With f(x) = f(—=). U
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It is known that there exists a continuous function f of bounded variation with period 27 for
which we do not have |kCk(f)] — 0 (k| — o0). Cantor’s function can be used to construct an
example (see [2, p.27]). On the other hand we have the following results (Theorems 4.4, 4.6) of
Wiener (see [2, pp. 27-28] and also [5, p. 153, p. 196]).

Theorem 4.4. Let f be a 2mw-periodic function on R. Suppose that f is of bounded variation on
[0,27]. Then we have the following.

(1) If f is continuous on R, then

. - . km
(4.2) T}Lngonk; |C(f)]? sin? <2n) =0,

where Ci(f) is as in (4.1).
(2) If (4.2) holds, then f(z+0) = f(x —0) for all x € R; and hence the discontinuities of f
should be of the first kind and removable.

Let
(4.3) F,(x) = i f (x+ %w) —f <g:+ mn— 1%) 2
m=1

To prove Theorem 4.4 we need the following.

Lemma 4.5. Let Ci(f) be as in (4.1) and F,, as in (4.3). Then

27 [e%e]
/O Fu(@)] dz = 1670 3 |Ch(f)? sin? (’;Z)

k=—o0

Proof. We have

27 2n 2m m m—1 2
/0 Fn(a:)dacmzzl/o f(x+n7r)f(x+ - 7r) dx
27 2
:2n/0 f(m—&—;nw)—f(x—;nW) dx

2
)

= 47mn i |Ch i

k=—o0

where the last equality follows by the Parseval theorem (see [3, Theorem 11.40, p. 328]) with

Cri= g [ (1ot )~ (o 1)) e
= Cy(f) (eilm/@n) . e—ﬂm/@n))

= Cy(f)2isin(kn/(2n)).

— 134 —



Harmonic analysis with proofs (Sato)

Collecting the results, we get the conclusion of the lemma. O

Proof of Theorem 4.4. Let
wp(t) = sup [f(z+y)— f(2)]-

z€R,|y|<T
Then F,,(z) < wy(m/n)|| fllBv(0,2x))- Thus, if f is continuous, F,,(z) — 0 uniformly, so foh F,(x)dx —
0 as n — oco. This implies part (1) by Lemma 4.5.
Proof of part (2). Since f is 2m-periodic, we may assume that z € [0, 2] in the conclusion.

Suppose that there exists xo € [0, 27| such that
[f(zo+0)— f(zo—0)| >d for some d > 0.
Then there exists 6 > 0 such that if |y — zo| < d, [z — 20| < 0 and y < z¢ < z, then |f(2) — f(y)| >
d/2. Suppose that 2w /n < §. For x € [0,27] we have either
(i) mo € [z, + 27]
or
(i) zo+ 27 € [z, x + 27].
First we consider the case (i). We deal with the following three cases separately:
(a) xo € (x + (mo — 1)w/n,x + (mg + 1)7/n) for some 1 < mg < 2n — 1;
(b) zo € (x —7/n, x4+ 7/n);
(¢) o € (x+ (2n—V7/n,z+ 2n+ 1)7/n).
We now handle the case (a). We have |f(x+ (mo+1)7/n) — f(z+ (mo—1)7/n)| > d/2 and hence
(o + mom/n) — (@ + (mo — Dy/m)| > /4
or
|f(z+ (mo + V)7 /n) — f(z+ mem/n)| > d/4.
Next, we treat the case (b). Then |f(z + n/n) — f(x —w/n)| > d/2, which implies that we have
[f(x) = flz—m/n)] > d/4
or
|f(z +m/n) — f(x)] > d/4.
Since f is 2w-periodic, it follows that
|f(z+ 2nm)/n) — f(x + (2n — L)n/n)| > d/4
or

\f(x +m/n) = f(z)] > d/4.
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Finally, in the case (c) we have |f(x + (2n+ 1)7/n) — f(z + (2n — 1)7/n)| > d/2 and so

|f(z + (2n+ Dm/n) — f(z + (2n7)/n)| > d/4
or

[f (@ + (2nm)/n) — f(x + (2n — D)m/n)| > d/4,
which implies that

[f (@ +m/n) — fz)] > d/4

or

|f(z + (2n7)/n) — f(z + (2n — D)7 /n)| > d/4.
Collecting results in the cases (a), (b) and (c), we see that F,(z) > (d/4)? for all z € [0,27] and
n > 2x /6 in the case (i).

The same holds also in the case (ii). This can be seen as follows. Let yo = xg + 27. Then

Yo € [z, x + 27| and

|f(yo +0) = f(yo — 0)| = | f(zo + 0) — f(zo — 0)] > d.
Thus we can apply the arguments in the case (i) with yo in place of zg.
Combining results, we have F,(z) > (d/4)? for all x € [0,27] and n > 27/5. Therefore, if
|E%|l1 — 0 as n — oo, which holds if we have (4.2) by Lemma 4.5, then we have f(x+0) = f(x—0)
for all 2. This completes the proof of part (2). O

By Theorems 4.3, 4.4 and by applying Theorem 4.1 suitably, we have the following.

Theorem 4.6. Let [ be a 2m-periodic function on R which is of bounded variation on [0,27].
Then we have the following.

(1) If f is continuous on R, then we have

n

(4.4) Jim LS kG ()] =0,

k=—n

where Ci(f) is as in (4.1).
(2) Suppose that (4.4) holds. Then f(z +0) = f(x —0) for all z € R.

We note that (4.4) holds if limg| o [ECk(f)| = 0.

Remark 4.7. Let f: R — R be 27 periodic and such that

1, =0,

f@) = {O, x € [—m 7]\ 0.
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Then f is of bounded variation and Cy(f) = 0 for all ¥ € Z and so we have (4.4), but f is not

continuous at z = 0.
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