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Abstract

In this paper, we study the asymptotic behavior of orbits of nonexpansive semigroups in Banach

spaces. We also prove a nonlinear mean convergence theorem for two monotone nonexpansive

mappings in uniformly convex Banach spaces endowed with a partial order.

1. Introduction

Let E be a real Banach space, let C be a nonempty subset of E. For a mapping T : C → E, we

denote by F (T ) the set of fixed points of T , i.e., F (T ) = {z ∈ C : Tz = z}. A mapping T : C → C

is called nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ C. The existence of fixed points of

nonexpansive mappings in Banach and metric spaces has been investigated since the early 1960s

(For example, see [8, 9, 10, 13, 19]). The behavior of the sequence of Picard iterates of T is one of

the important problems in metric fixed point theory because this allows us to approximate a fixed

point in the simplest way. Moreau [23] proved that if C is a closed subset of a Hilbert space and if

F (T ) has nonempty interior, then for each x ∈ C, the sequence {Tnx} converges strongly to a point

in F (T ). Kirk and Sims [18] generalized this result to Banach spaces which are strictly convex

and the nonempty closed subsets of which are densely proximal. Grzesik, Kaczor, Kuczumow and

Reich [15] proved convergence of iterates of nonexpansive mappings: Let C be a bounded closed

and convex subset of a uniformly convex Banach space E. Assume that C has nonempty interior

and that it is locally uniformly rotund. Let T be a nonexpansive mapping of C into itself and let

x ∈ C. If T has no fixed point in the interior of C, then there exists a unique point z0 on the

boundary ∂C of C such that each sequence {Tnx : n = 1, 2, 3, . . .} converges strongly to z0. They

[15] also proved the convergence of orbits of one-parameter nonexpansive semigroups.
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Baillon [6] proved the following first nonlinear mean convergence theorem in a Hilbert space: Let

C be a nonempty bounded closed convex subset of a Hilbert space H and let T be a nonexpansive

mapping of C into itself. Then, for any x ∈ C,

{Snx} =

{
1

n

n−1∑
i=0

T ix

}

converges weakly to a fixed point of T (see also [31]).

In recent years, a new direction has been very active essentially after the publication of Ran and

Reurings results [25]. They proved an analogue of the classical Banach contraction principle [7] in

metric spaces endowed with a partial order. In particular, they show how this extension is useful

when dealing with some special matrix equations (see also [17, 24, 32, 33].) Bin Dehaish and

Khamsi [14] proved a weak convergence theorem of Mann’s type [22] for monotone nonexpansive

mappings in Banach spaces endowed with a partial order (see also [22, 26]). Shukla and Wísnicki

[29] obtained a nonlinear mean convergence theorem for monotone nonexpansive mappings in such

Banach spaces.

In this paper, we study the asymptotic behavior of orbits of nonexpansive semigroups with no

common fixed points in the interior of their domains. We also prove a nonlinear mean convergence

theorem for two monotone nonexpansive mappings in uniformly convex Banach spaces endowed

with a partial order.

2. Preliminaries and Lemmas

Throughout this paper, we assume that E is a real Banach space with norm ‖ · ‖. We denote by

E∗ the topological dual space of E. We denote by N and R the set of all positive integers and the

set of all real numbers, respectively. We also denote by R+ the set of all nonnegative real numbers.

We write xn → x (or lim
n→∞

xn = x) to indicate that the sequence {xn} of vectors in E converges

strongly to x. We also write xn ⇀ x (or w- limn→∞ xn = x) to indicate that the sequence {xn}
of vectors in E converges weakly to x. We also denote by 〈y, x∗〉 the value of x∗ ∈ E∗ at y ∈ E.

For a subset A of E, coA and coA mean the convex hull of A and the closure of convex hull of A,

respectively.

Let S be a semitopological semigroup, i.e., S is a semigroup with a Hausdorff topology such

that for each a ∈ S the mappings s �→ a · s and s �→ s · a from S to S are continuous. In the

case when S is commutative, we denote st by s+ t. Let B(S) be the Banach space of all bounded

real-valued functions defined on S with supremum norm and let C(S) be the subspace of B(S) of

all bounded real-valued continuous functions on S. For each s ∈ S and g ∈ B(S), we can define an
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Throughout this paper, we assume that E is a real Banach space with norm ‖ · ‖. We denote by

E∗ the topological dual space of E. We denote by N and R the set of all positive integers and the

set of all real numbers, respectively. We also denote by R+ the set of all nonnegative real numbers.

We write xn → x (or lim
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strongly to x. We also write xn ⇀ x (or w- limn→∞ xn = x) to indicate that the sequence {xn}
of vectors in E converges weakly to x. We also denote by 〈y, x∗〉 the value of x∗ ∈ E∗ at y ∈ E.

For a subset A of E, coA and coA mean the convex hull of A and the closure of convex hull of A,

respectively.

Let S be a semitopological semigroup, i.e., S is a semigroup with a Hausdorff topology such

that for each a ∈ S the mappings s �→ a · s and s �→ s · a from S to S are continuous. In the

case when S is commutative, we denote st by s+ t. Let B(S) be the Banach space of all bounded

real-valued functions defined on S with supremum norm and let C(S) be the subspace of B(S) of

all bounded real-valued continuous functions on S. For each s ∈ S and g ∈ B(S), we can define an

element ℓsg ∈ B(S) by (ℓsg)(t) = g(st) for all t ∈ S. We also denote by ℓ∗s the conjugate operator

of ℓs. Let C(S)∗ be the dual space of C(S). A linear functional µ on C(S) is called a mean on

C(S) if ‖µ‖ = µ(1) = 1. We often write µt(g(t)) or
∫
g(t)dµ(t) instead of µ(g) for µ ∈ C(S)∗ and

g ∈ C(S). A mean µ on C(S) is called invariant if µ(ℓsg) = µ(g) for all s ∈ S and g ∈ C(S).

For s ∈ S, we can define a point evaluation δs by δs(g) = g(s) for every g ∈ B(S). A convex

combination of point evaluations is called a finite mean on S. A finite mean µ on S is also a mean

on C(S) containing constants.

The following definition which was introduced by Takahashi [30] is crucial in the nonlinear

ergodic theory for abstract semigroups (see also [16]). Let h be a continuous function of S into E

such that the weak closure of {h(t) : t ∈ S} is weakly compact. Then, for any µ ∈ C(S)∗ there

exists a unique element hµ ∈ E such that

〈hµ, x
∗〉 = (µ)t〈h(t), x∗〉 =

∫
〈h(t), x∗〉 dµ(t)

for all x∗ ∈ E∗. If µ is a mean on C(S), then hµ is contained in co{h(t) : t ∈ S} (for example, see

[30, 31]). Sometimes, hµ will be denoted by
∫
h(t)dµ(t).

Throughout this paper, we assume that S is a commutative semitopological semigroup with

identity. Let C be a closed convex subset of a Banach space E. Then, a family S = {T (s) : s ∈ S}
of mappings of C into itself is called a nonexpansive semigroup on C if it satisfies the following

conditions:

(a) T (s+ t) = T (s)T (t) for all s, t ∈ S;

(b) s �→ T (s)x is continuous;

(c) ‖T (s)x− T (s)y‖ ≤ ‖x− y‖ for all x, y ∈ C and s ∈ S.

We denote by F (S) the set of common fixed points of T (t), t ∈ S. Let S = {T (t) : t ∈ S} be a

nonexpansive semigroup on C. Assume that for each x ∈ C and x∗ ∈ E∗, the weak closure of

{T (t)x : t ∈ S} is weakly compact. Let µ be a mean on C(S). Following [27], we also write Tµx

instead of
∫
T (t)x dµ(t) for x ∈ C. We remark that Tµ is nonexpansive on C and Tµx = x for each

x ∈ F (S). If µ is a finite mean, i.e.,

µ =

n∑
i=1

aiδti (ti ∈ S, ai ≥ 0,

n∑
i=1

ai = 1),

then

Tµx =
n∑

i=1

aiT (ti)x.
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A Banach space E is said to be strictly convex if
‖x+ y‖

2
< 1 for x, y ∈ E with

‖x‖ = ‖y‖ = 1 and x �= y. In a strictly convex Banach space, we have that if

‖x‖ = ‖y‖ = ‖ (1− λ)x+ λy‖

for x, y ∈ E and λ ∈ (0, 1) , then x = y. For every ε with 0 ≤ ε ≤ 2, we define the modulus δ(ε)

of convexity of E by

δ (ε) = inf

{
1− ‖x+ y‖

2
: ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε

}
.

A Banach space E is said to be uniformly convex if δ (ε) > 0 for every ε > 0. If E is uniformly

convex, then for r, ε with r ≥ ε > 0, we have δ
(
ε
r

)
> 0 and

∥∥∥∥
x+ y

2

∥∥∥∥ ≤ r
(
1− δ

(ε
r

))

for every x, y ∈ E with ‖x‖ ≤ r, ‖y‖ ≤ r and ‖x−y‖ ≥ ε. It is well-known that a uniformly convex

Banach space is reflexive and strictly convex. Let SE = {x ∈ E : ‖x‖ = 1} be a unit sphere in a

Banach space E. A Banach space E is said to be locally uniformly rotund if for each x ∈ SE and

for each ε ∈ (0, 2], there exists δ(x, ε) > 0 such that for each y ∈ SE with ‖x− y‖ ≥ ε, we have

1−
∥∥∥∥
x+ y

2

∥∥∥∥ ≥ δ(x, ε).

For more details, see [20].

Let E be a Banach space, let C be a nonempty bounded closed and convex subset of E. Assume

that C has nonempty interior, that is, int(C) �= ∅. We say that C is locally uniformly rotund if for

each x ∈ ∂C and for each ε ∈ (0, dx), where dx = sup{‖x− x′‖ : x′ ∈ C}, there exists δ(x, ε) > 0

such that for each y ∈ C with ‖x− y‖ ≥ ε, we have

dist

(
x+ y

2
, ∂C

)
:= inf

{∥∥∥∥
x+ y

2
− x′

∥∥∥∥ : x′ ∈ ∂C

}
≥ δ(x, ε).

Let C be a nonempty bounded closed and convex subset of a Banach space E. Assume that

C has nonempty interior, that is, int(C) �= ∅. We say that C is uniformly convex if for each

ε ∈ (0, diam(C)), there exists ηC(ε) > 0 such that for each x, y ∈ C with ‖x− y‖ ≥ ε, we have

dist

(
x+ y

2
, ∂C

)
:= inf

{∥∥∥∥
x+ y

2
− x′

∥∥∥∥ : x′ ∈ ∂C

}
≥ ηC(ε).

Observe that if a Banach space E admits a nonempty bounded closed and convex subset which

has nonempty interior and is uniformly convex, then E has to be reflexive (see [31]).

Now, we present a simple example of a bounded closed and convex subset of a Hilbert space,

which is locally uniformly rotund but not uniformly convex (see [20]).
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Now, we present a simple example of a bounded closed and convex subset of a Hilbert space,
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Example 2.1 ([20]). Let H = ℓ2. Let

C =

{
x = {xi} ∈ H = ℓ2 :

∞∑
k=2

(|x2k−1|k + |x2k|k)
2
k ≤ 1

}
.

Then, C is bounded, closed, convex and has nonempty interior. Moreover, C is locally uniformly

rotund, but not uniformly convex.

Let C be a nonempty subset of a Banach space E and let T be mapping of C into E. The

mapping T is said to be demiclosed if for any sequence {xn} ⊂ C the following implication hold:

w- lim
n→∞

xn = x and lim
n→∞

‖Txn − y‖ = 0

imply that

Tx = y

(see [12]).

Theorem 2.2 ([12]). Let C be a nonempty closed and convex subset of a uniformly convex Banach

space E. Let T be a nonexpansive mapping of C into itself and let I be the identity mapping. Then,

I − T is demiclosed at 0, that is,

w- lim
n→∞

xn = x and lim
n→∞

‖xn − Txn‖ = 0

imply that

Tx = x.

The following theorem has been essentially established in [13] (see also [8, 10, 19, 31]).

Theorem 2.3 ([13]). Let C be a nonempty bounded closed and convex subset of a uniformly

convex Banach space E. Let S = {T (t) : t ∈ S} be a nonexpansive semigroup on C. Then, F (S)
is nonempty.

The following theorem has been essentially established in [9] (see also [10, 13, 31]).

Theorem 2.4 ([9]). Let C be a closed and convex subset of a strictly convex Banach space E. Let

S = {T (t) : t ∈ S} be a nonexpansive semigroup on C such that F (S) �= ∅. Then, the set F (S) is

closed and convex.

The following lemma plays an important role in this paper (see [5, 16, 28]).

Lemma 2.5 ([5]). Let C be a nonempty bounded, closed convex subset of a uniformly convex

Banach space E. Let S be a commutative semitopological semigroup with identity. Let S = {T (t) :
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t ∈ S} be a nonexpansive semigroup on C. Let {µn} be a sequence of means on C(S) such that

limn→∞ ‖µn − ℓ∗sµn‖ = 0 for each s ∈ S. Then, for each t ∈ S,

lim
n→∞

sup
y∈C

‖Tµn
y − T (t)Tµn

y‖ = 0.

3. Asymptotic behavior of orbits of nonexpansive semigroups

In this section, we prove convergence theorems for nonexpansive semigroups with no common

fixed points in the interior of their domains. Throughout this paper, we assume that S is a

commutative semitopological semigroup with identity.

3.1. Convergence theorems for nonexpansive semigroups. In this subsection, we prove

strong convergence theorems for nonexpansive semigroups. A sequence {xn} in C is said to be an

approximating sequence of a nonexpansive mapping T of C into itself if

lim
n→∞

‖xn − Txn‖ = 0

(for example, see [15, 21, 31]). A sequence {xn} in C is said to be an approximating sequence of a

nonexpansive semigroup S = {T (t) : t ∈ S} on C if

lim
n→∞

‖xn − T (t)xn‖ = 0

for each t ∈ S (for example, see [15]). We study the behavior of approximating sequences of

nonexpansive semigroups.

Theorem 3.1 ([1]). Let E be a reflexive Banach space and let C be a bounded, closed and convex

subset of E with nonempty interior. Assume further that C is locally uniformly rotund. Let S be

a commutative semitopological semigroup with identity. Let S = {T (t):t ∈ S} be a nonexpansive

semigroup on C. Assume that I − T (t) is demiclosed at 0 for each t ∈ S. If S = {T (t):t ∈ S} has

a unique common fixed point z0 and z0 lies on the boundary ∂C of C, then every approximating

sequence {xn} of S converges strongly to z0.

We can prove convergence of orbits of nonexpansive semigroups with no common fixed points

in the interior of their domains.

Theorem 3.2 ([1]). Let E be a uniformly convex Banach space and let C be a bounded closed

and convex subset of E. Assume that C has nonempty interior and that it is locally uniformly

rotund. Let S be a commutative semitopological semigroup with identity. Let S = {T (t) : t ∈ S}
be a nonexpansive semigroup on C. If S = {T (t) : t ∈ S} has no common fixed point in the
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approximating sequence of a nonexpansive mapping T of C into itself if

lim
n→∞

‖xn − Txn‖ = 0

(for example, see [15, 21, 31]). A sequence {xn} in C is said to be an approximating sequence of a

nonexpansive semigroup S = {T (t) : t ∈ S} on C if

lim
n→∞

‖xn − T (t)xn‖ = 0

for each t ∈ S (for example, see [15]). We study the behavior of approximating sequences of

nonexpansive semigroups.

Theorem 3.1 ([1]). Let E be a reflexive Banach space and let C be a bounded, closed and convex

subset of E with nonempty interior. Assume further that C is locally uniformly rotund. Let S be

a commutative semitopological semigroup with identity. Let S = {T (t):t ∈ S} be a nonexpansive

semigroup on C. Assume that I − T (t) is demiclosed at 0 for each t ∈ S. If S = {T (t):t ∈ S} has

a unique common fixed point z0 and z0 lies on the boundary ∂C of C, then every approximating

sequence {xn} of S converges strongly to z0.

We can prove convergence of orbits of nonexpansive semigroups with no common fixed points

in the interior of their domains.

Theorem 3.2 ([1]). Let E be a uniformly convex Banach space and let C be a bounded closed

and convex subset of E. Assume that C has nonempty interior and that it is locally uniformly

rotund. Let S be a commutative semitopological semigroup with identity. Let S = {T (t) : t ∈ S}
be a nonexpansive semigroup on C. If S = {T (t) : t ∈ S} has no common fixed point in the

interior of C, then there exists a unique point z0 on the boundary ∂C of C such that each orbit

{T (t)x : t ∈ S} converges strongly to z0.

The following example shows that the assumption that C is locally uniformly rotund is crucial

(see[15]).

Example 3.3. Let H = R2 be endowed with the standard Euclidean norm and let C = {(x, y) ∈
R2 : |x| ≤ 1, |y| ≤ 1}. If T (x, y) = (1,−y) for (x, y) ∈ C, then T is nonexpansive and (1, 0) ∈ ∂C

is its unique fixed point, but {Tn(1, 1), n = 1, 2, . . .}, do not converge to (1, 0).

3.2. Deduced theorems from main results. Using Theorems 3.1 and 3.2, we get some con-

vergence theorems (see [15]).

Let C be a closed convex subset of a Banach space E. Then, a family S = {T (s) : s ∈ R+} of

mappings of C into itself is called a one-parameter nonexpansive semigroup on C if it satisfies the

following conditions:

(a) T (s+ t) = T (s)T (t) for all s, t ∈ R+;

(b) T (0)x = x for each x ∈ C;

(c) s �→ T (s)x is continuous;

(d) ‖T (s)x− T (s)y‖ ≤ ‖x− y‖ for all x, y ∈ C and s ∈ R+

Using Theorem 3.1 and Lemma 2.5, we obtain the following convergence theorem (see also [11]).

Theorem 3.4 ([1]). Let E be a uniformly convex Banach space and let C be a bounded, closed and

convex subset of E with nonempty interior. Assume further that C is locally uniformly rotund.

Let S = {T (t):t ∈ S} be a nonexpansive semigroup on C. Assume that S = {T (t):t ∈ S} has a

unique common fixed point z0 and that z0 lies on the boundary ∂C of C. Let {µn} be a sequence

of means on C(S) such that

lim
n→∞

‖µn − ℓ∗sµn‖ = 0

for each s ∈ S. Let x ∈ C and let {zn} be the sequence defined by

zn =
1

n
x+

(
1− 1

n

)
Tµnzn for each n ∈ N.

Then, {zn} converges strongly to z0.

Using Theorem 3.1 and Lemma 2.5, we also obtain the following convergence theorem (see also

[34]).

Theorem 3.5 ([1]). Let E be a uniformly convex Banach space and let C be a bounded, closed and

convex subset of E with nonempty interior. Assume further that C is locally uniformly rotund.
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Let S = {T (t):t ∈ S} be a nonexpansive semigroup on C. Assume that S = {T (t):t ∈ S} has a

unique common fixed point z0 and that z0 lies on the boundary ∂C of C. Let {µn} be a sequence

of means on C(S) such that

lim
n→∞

‖µn − ℓ∗sµn‖ = 0

for each s ∈ S. Let u0 = x ∈ C and let {un} be the sequence defined by

un =
1

n
un−1 +

(
1− 1

n

)
Tµn

un for each n ∈ N.

Then, {un} converges strongly to z0.

Using Theorem 3.1, we obtain the following convergence theorems (see [15]).

Theorem 3.6. Let E be a reflexive Banach space and let C be a bounded, closed and convex

subset of E with nonempty interior. Assume further that C is locally uniformly rotund. Let T be

a nonexpansive mapping of C into itself. Assume that I −T is demiclosed at 0. If T has a unique

fixed point z0 and z0 lies on the boundary ∂C of C, then every approximating sequence {xn} of T

converges strongly to z0.

Theorem 3.7. Let E be a reflexive Banach space and let C be a bounded, closed and convex

subset of E with nonempty interior. Assume further that C is locally uniformly rotund. Let

S = {T (t):t ∈ R+} be a one-parameter nonexpansive semigroup on C. Assume that I − T (t) is

demiclosed at 0 for each t ∈ R+. If S = {T (t):t ∈ R+} has a unique common fixed point z0 and z0

lies on the boundary ∂C of C, then every approximating sequence {xn} of S converges strongly to

z0.

Theorem 3.8. Let E be a reflexive Banach space and let C be a bounded, closed and convex

subset of E with nonempty interior. Assume further that C is locally uniformly rotund. Let T be

a nonexpansive mapping of C into itself. Assume that I − T is demiclosed at 0 and that T has a

unique fixed point z0 which lies on the boundary ∂C of C. Let x ∈ C and let {zn} be the sequence

defined by

zn =
1

n
x+

(
1− 1

n

)
Tzn for each n ∈ N.

Then, {zn} converges strongly to z0.

Theorem 3.9. Let E be a reflexive Banach space and let C be a bounded, closed and convex

subset of E with nonempty interior. Assume further that C is locally uniformly rotund. Let T be

a nonexpansive mapping of C into itself. Assume that I − T is demiclosed at 0 and that T has a
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Let S = {T (t):t ∈ S} be a nonexpansive semigroup on C. Assume that S = {T (t):t ∈ S} has a

unique common fixed point z0 and that z0 lies on the boundary ∂C of C. Let {µn} be a sequence

of means on C(S) such that

lim
n→∞

‖µn − ℓ∗sµn‖ = 0

for each s ∈ S. Let u0 = x ∈ C and let {un} be the sequence defined by

un =
1

n
un−1 +

(
1− 1

n

)
Tµn

un for each n ∈ N.

Then, {un} converges strongly to z0.

Using Theorem 3.1, we obtain the following convergence theorems (see [15]).

Theorem 3.6. Let E be a reflexive Banach space and let C be a bounded, closed and convex

subset of E with nonempty interior. Assume further that C is locally uniformly rotund. Let T be

a nonexpansive mapping of C into itself. Assume that I −T is demiclosed at 0. If T has a unique

fixed point z0 and z0 lies on the boundary ∂C of C, then every approximating sequence {xn} of T

converges strongly to z0.

Theorem 3.7. Let E be a reflexive Banach space and let C be a bounded, closed and convex

subset of E with nonempty interior. Assume further that C is locally uniformly rotund. Let

S = {T (t):t ∈ R+} be a one-parameter nonexpansive semigroup on C. Assume that I − T (t) is

demiclosed at 0 for each t ∈ R+. If S = {T (t):t ∈ R+} has a unique common fixed point z0 and z0

lies on the boundary ∂C of C, then every approximating sequence {xn} of S converges strongly to

z0.

Theorem 3.8. Let E be a reflexive Banach space and let C be a bounded, closed and convex

subset of E with nonempty interior. Assume further that C is locally uniformly rotund. Let T be

a nonexpansive mapping of C into itself. Assume that I − T is demiclosed at 0 and that T has a

unique fixed point z0 which lies on the boundary ∂C of C. Let x ∈ C and let {zn} be the sequence

defined by

zn =
1

n
x+

(
1− 1

n

)
Tzn for each n ∈ N.

Then, {zn} converges strongly to z0.

Theorem 3.9. Let E be a reflexive Banach space and let C be a bounded, closed and convex

subset of E with nonempty interior. Assume further that C is locally uniformly rotund. Let T be

a nonexpansive mapping of C into itself. Assume that I − T is demiclosed at 0 and that T has a

unique fixed point z0 which lies on the boundary ∂C of C. Let u0 = x ∈ C and let {un} be the

sequence defined by

un =
1

n
un−1 +

(
1− 1

n

)
Tun for each n ∈ N.

Then, {un} converges strongly to z0.

By Theorem 3.4, we get the following convergence theorem (see also [31]).

Theorem 3.10. Let E be a uniformly convex Banach space and let C be a bounded, closed and

convex subset of E with nonempty interior. Assume further that C is locally uniformly rotund.

Let S = {T (t):t ∈ R+} be a one-parameter nonexpansive semigroup on C. Assume that S = {T (t):
t ∈ R+} has a unique common fixed point z0 and that z0 lies on the boundary ∂C of C. Let {tn}
be a sequence in (0,∞) with tn → ∞. Let x ∈ C and let {zn} be the sequence defined by

zn =
1

n
x+

(
1− 1

n

)
1

tn

∫ tn

0

T (t)zndt for each n ∈ N.

Then, {zn} converges strongly to z0.

By Theorem 3.5, we get the following theorem.

Theorem 3.11. Let E be a uniformly convex Banach space and let C be a bounded, closed and

convex subset of E with nonempty interior. Assume further that C is locally uniformly rotund.

Let S = {T (t):t ∈ R+} be a one-parameter nonexpansive semigroup on C. Assume that S = {T (t):
t ∈ R+} has a unique common fixed point z0 and that z0 lies on the boundary ∂C of C. Let {tn}
be a sequence in (0,∞) with tn → ∞. Let u0 = x ∈ C and let {un} be the sequence defined by

un =
1

n
un−1 +

(
1− 1

n

)
1

tn

∫ tn

0

T (t)undt for each n ∈ N.

Then, {un} converges strongly to z0.

Using Theorem 3.2, we also get the following theorems (see [15]).

Theorem 3.12. Let E be a uniformly convex Banach space and let C be a bounded closed and

convex subset of E. Assume that C has nonempty interior and that it is locally uniformly rotund.

Let T be a nonexpansive mapping of C into itself. If T has no fixed point in the interior of C,

then there exists a unique point z0 on the boundary ∂C of C such that each sequence {Tnx : n =

1, 2, 3, . . .} converges strongly to z0.

Theorem 3.13. Let E be a uniformly convex Banach space and let C be a bounded closed and

convex subset of E. Assume that C has nonempty interior and that it is locally uniformly rotund.
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Let S = {T (t) : t ∈ R+} be a one-parameter nonexpansive semigroup on C. If S = {T (t) : t ∈ R+}
has no common fixed point in the interior of C, then there exists a unique point z0 on the boundary

∂C of C such that each orbit {T (t)x : t ∈ R+} converges strongly to z0.

4. Nonlinear mean convergence theorems

In this section, we show nonlinear mean convergence theorems for two monotone nonexpansive

mappings.

4.1. Monotone and approximating sequences. Throughout this section, we assume that E

is a real Banach space with norm ‖ · ‖ and endowed with a partial order � compatible with the

linear structure of E, that is,

x � y implies x+ z � y + z,

x � y implies λx � λy

for every x, y, z ∈ E and λ ≥ 0. As usual we adopt the convention x � y if and only if y � x. It

follows that all order intervals [x,→] = {z ∈ E : x � z} and [←, y] = {z ∈ E : z ∈ E : z � y} are

convex. Moreover, we assume that each order intervals [x,→] and [←, y] are closed. Recall that

an order interval is any of the subsets

[a,→] = {x ∈ E; a � x} or [←, a] = {x ∈ E;x � a}.

for any a ∈ E. As a direct consequence of this, the subset

[a, b] = {x ∈ E; a � x � b} = [a,→] ∩ [←, b]

is also closed and convex for each a, b ∈ E.

Let E be a real Banach space with norm ‖ · ‖ and endowed with a partial order � compatible

with the linear structure of E. Let C be a nonempty subset of E. A mapping T : C → C is called

monotone if

Tx � Ty

for each x, y ∈ C such that x � y. For a mapping T : C → C, we denote by F (T ) the set of fixed

points of T , i.e., F (T ) = {z ∈ C : Tz = z}.
In this subsection, we study monotone sequences and approximating sequences of nonexpansive

mappings. A sequence {xn} in E is said to be monotone if

x1 � x2 � x3 � · · ·

(see also [14]). The following lemma was obtained by the author and Takahashi [3] (see also [4]).
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Let S = {T (t) : t ∈ R+} be a one-parameter nonexpansive semigroup on C. If S = {T (t) : t ∈ R+}
has no common fixed point in the interior of C, then there exists a unique point z0 on the boundary

∂C of C such that each orbit {T (t)x : t ∈ R+} converges strongly to z0.

4. Nonlinear mean convergence theorems

In this section, we show nonlinear mean convergence theorems for two monotone nonexpansive

mappings.

4.1. Monotone and approximating sequences. Throughout this section, we assume that E

is a real Banach space with norm ‖ · ‖ and endowed with a partial order � compatible with the

linear structure of E, that is,

x � y implies x+ z � y + z,

x � y implies λx � λy

for every x, y, z ∈ E and λ ≥ 0. As usual we adopt the convention x � y if and only if y � x. It

follows that all order intervals [x,→] = {z ∈ E : x � z} and [←, y] = {z ∈ E : z ∈ E : z � y} are

convex. Moreover, we assume that each order intervals [x,→] and [←, y] are closed. Recall that

an order interval is any of the subsets

[a,→] = {x ∈ E; a � x} or [←, a] = {x ∈ E;x � a}.

for any a ∈ E. As a direct consequence of this, the subset

[a, b] = {x ∈ E; a � x � b} = [a,→] ∩ [←, b]

is also closed and convex for each a, b ∈ E.

Let E be a real Banach space with norm ‖ · ‖ and endowed with a partial order � compatible

with the linear structure of E. Let C be a nonempty subset of E. A mapping T : C → C is called

monotone if

Tx � Ty

for each x, y ∈ C such that x � y. For a mapping T : C → C, we denote by F (T ) the set of fixed

points of T , i.e., F (T ) = {z ∈ C : Tz = z}.
In this subsection, we study monotone sequences and approximating sequences of nonexpansive

mappings. A sequence {xn} in E is said to be monotone if

x1 � x2 � x3 � · · ·

(see also [14]). The following lemma was obtained by the author and Takahashi [3] (see also [4]).

Lemma 4.1 ([3]). Let C be a nonempty bounded closed convex subset of an ordered uniformly

convex Banach space E. Let S and T be monotone nonexpansive mappings of C into itself with

ST = TS. Then,

lim
n→∞

sup
x∈C

∥∥∥∥∥
1

n2

n−1∑
i=0

n−1∑
i=0

SiT jx− T

(
1

n2

n−1∑
i=0

n−1∑
i=0

SiT jx

)∥∥∥∥∥ = 0

and

lim
n→∞

sup
x∈C

∥∥∥∥∥
1

n2

n−1∑
i=0

n−1∑
i=0

SiT jx− S

(
1

n2

n−1∑
i=0

n−1∑
i=0

SiT jx

)∥∥∥∥∥ = 0.

The following theorem was proved by Browder [12].

Theorem 4.2 ([12]). Let C be a nonempty bounded closed convex subset of an ordered uniformly

convex Banach space E and let T be a nonexpansive mapping of C into itself. Let {xn} be a

sequence in C such that it converges weakly to an element u in C and {xn − Txn} converges

strongly to 0. Then, u is a fixed point of T .

Using Theorem 4.2, we can prove the following result which is crucial in this paper.

Theorem 4.3. Let C be a nonempty bounded closed convex subset of an ordered uniformly convex

Banach space E. Let S and T be monotone nonexpansive mappings of C into itself. Let {xn} be

a sequence in C which is a monotone, and approximating sequence of T and S, i.e.,

lim
n→∞

‖xn − Txn‖ = lim
n→∞

‖xn − Sxn‖ = 0.

Then, then the sequence {xn} converges weakly to a point of F (S) ∩ F (T ).

4.2. Nonlinear mean convergence theorems for nonexpansive mappings. In this subsec-

tion, we show nonlinear mean convergence theorems for monotone nonexpansive mappings. Using

Lemma 4.1, we can prove the following lemma which plays an important role in our results.

Lemma 4.4 ([2]). Let C be a nonempty closed convex subset of an ordered uniformly convex

Banach space E. Let S and T be monotone nonexpansive mappings of C into itself such that

ST = TS and F (S) ∩ F (T ) �= ∅. Assume that x � Sx and x � Tx for each x ∈ C. Let x ∈ C.

For each n ∈ N and m ∈ {0, 1, 2, . . .}, let

U (m)
n x =

1

n2

n−1∑
k=0

n−1∑
l=0

Sk+mT l+mx.

Then, the sequence {U (m)
n x}∞n=1 in C is an approximating sequence of S and T uniformly in

m ∈ {0, 1, 2, . . .}.
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Lemma 4.5 ([2]). Let C be a nonempty closed convex subset of an ordered Banach space E. Let S

and T be monotone nonexpansive mappings of C into itself such that ST = TS and F (S)∩F (T ) �=
∅. Assume that x � Sx and x � Tx for each x ∈ C. Let x ∈ C. For each m ∈ {0, 1, 2, . . .}, let

U (m)
n x =

1

n2

n−1∑
k=0

n−1∑
l=0

Sk+mT l+mx.

Then, for each m ∈ {0, 1, 2, . . .}, the sequence {U (m)
n x}∞n=1 in C is monotone.

We can prove a nonlinear mean convergence theorem for two monotone nonexpansive mappings.

Theorem 4.6 ([2]). Let C be a nonempty closed convex subset of an ordered uniformly convex

Banach space E. Let S and T be monotone nonexpansive mappings of C into itself such that

ST = TS and F (S) ∩ F (T ) �= ∅. Assume that x � Sx and x � Tx for each x ∈ C. Then,
{

1

n2

n−1∑
k=0

n−1∑
l=0

SkT lx

}

converges weakly to a point of F (S) ∩ F (T ).

Using Theorem 4.6, we get some convergence theorems for monotone nonexpansive mappings

in ordered uniformly convex Banach spaces (see [29]).

Theorem 4.7. Let C be a nonempty closed convex subset of an ordered uniformly convex Banach

space E and let T be a monotone nonexpansive mapping of C into itself such that F (T ) �= ∅.
Assume that x � Tx for each x ∈ C. Then, {Snx} = { 1

n

∑n−1
k=0 T

kx} converges weakly to a point

of F (T ).

Theorem 4.8. Let C be a nonempty closed convex subset of an ordered uniformly convex Banach

space E and let T be a monotone nonexpansive mapping of C into itself such that F (T ) �= ∅.
Assume that x � Tx for each x ∈ C. Then, {Tnx} converges weakly a point of F (T ).
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Lemma 4.5 ([2]). Let C be a nonempty closed convex subset of an ordered Banach space E. Let S

and T be monotone nonexpansive mappings of C into itself such that ST = TS and F (S)∩F (T ) �=
∅. Assume that x � Sx and x � Tx for each x ∈ C. Let x ∈ C. For each m ∈ {0, 1, 2, . . .}, let

U (m)
n x =

1

n2

n−1∑
k=0

n−1∑
l=0

Sk+mT l+mx.

Then, for each m ∈ {0, 1, 2, . . .}, the sequence {U (m)
n x}∞n=1 in C is monotone.

We can prove a nonlinear mean convergence theorem for two monotone nonexpansive mappings.

Theorem 4.6 ([2]). Let C be a nonempty closed convex subset of an ordered uniformly convex

Banach space E. Let S and T be monotone nonexpansive mappings of C into itself such that

ST = TS and F (S) ∩ F (T ) �= ∅. Assume that x � Sx and x � Tx for each x ∈ C. Then,
{

1

n2

n−1∑
k=0

n−1∑
l=0

SkT lx

}

converges weakly to a point of F (S) ∩ F (T ).

Using Theorem 4.6, we get some convergence theorems for monotone nonexpansive mappings

in ordered uniformly convex Banach spaces (see [29]).

Theorem 4.7. Let C be a nonempty closed convex subset of an ordered uniformly convex Banach

space E and let T be a monotone nonexpansive mapping of C into itself such that F (T ) �= ∅.
Assume that x � Tx for each x ∈ C. Then, {Snx} = { 1

n

∑n−1
k=0 T

kx} converges weakly to a point

of F (T ).

Theorem 4.8. Let C be a nonempty closed convex subset of an ordered uniformly convex Banach

space E and let T be a monotone nonexpansive mapping of C into itself such that F (T ) �= ∅.
Assume that x � Tx for each x ∈ C. Then, {Tnx} converges weakly a point of F (T ).
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