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Abstract

We study a doubly nonlinear parabolic equation describing the gradient flow associated with

the Sobolev inequality, called as p−Sobolev flow. We show that the asymptotic behavior of the

p−Sobolev flow at time-infinity is characterized by the so-called volume and energy concetration

phenomenon.
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1 Introduction

In this report we consider the following doubly nonlinear degenerate and singular parabolic

equation, called p−Sobolev flow,




∂tu
q − div

(
|∇u|p−2∇u

)
= λ(t)uq in Ω∞ := Ω× (0,∞)

‖u(t)‖q+1 = 1 for t ≥ 0
u = u0 on ∂pΩ∞ := ∂Ω× (0,∞)

(1.1)

Here Ω be a bounded domain in IRn (n ≥ 3) with smooth boundary ∂Ω, p > 1, p ≤ q + 1 ≤ p∗

with p∗ := np
n−p if 1 < p < n and any finite positive number if p ≥ n, u = u(x, t) is a nonnegative

function defined for (x, t) ∈ Ω∞, ∇α = ∂/∂xα, α = 1, . . . ,m, ∇u = (∇αu) is the spatial gradient

of a function u, |∇u|2 =
∑m

α=1(∇αu)
2 and ∂tu is the derivative on time t. The initial and boundary

data u0 = u0(x) is in the Sobolev space W1,p
0 (Ω), nonnegative, bounded and ∥u0∥q+1 = 1. The

function λ(t) is computed by the condition (1.1)2 as follows: Multiply the equation in (1.1)1 by u
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and integrate the resulting one by parts on space to have

d

dt

q

q + 1
‖u(t)‖q+1

q+1 + ‖∇u(t)‖pp = λ(t)‖u(t)‖q+1
q+1 =⇒ λ(t) = ‖∇u(t)‖pp,

where ∥f∥p is the Lp(Ω)−norm of a function f . The system above describes the negative directed

gradient flow in the constrained extremal problem for the p−energy. The corresponding Euler-

Lagrange equation is given as the p−Laplace type equation, which has only trivial solution if the

domain Ω is star-shaped with the origin. This fact is verified by a Pohožaev type identity and

Hopf’s maximum principle, which are proved through the regularized p−Laplace equation (see

[5]). Thus, a solution of the evolution equation may have concentration points of volume, local

(q + 1)−powered integral, at infinite time, by the volume conservation ∥u(t)∥q+1 = 1. Our main

purpose is to study such asymptotic behavior of a solution to the evolution equation above.

The first result is the global existence a weak solution of (1.1) and its regularity (see [6, 7]).

Theorem 1. (A global existence and regularity) Let p > 1 and p ≤ q + 1 ≤ p∗. Suppose

that u0 belongs to W1,p
0 (Ω), is nonnegative, bounded, ∥u0∥∞ < ∞, and ∥u0∥q+1 = 1. Then, there

exists a global weak solution u ∈ C
(
[0, ∞);Lq+1(Ω)

)
∩L∞(0, ∞;W 1,p

0 (Ω)) of the Cauchy-Dirichlet

problem (1.1), satisfying the energy inequalities

‖u(t)‖q+1 = 1, ∀t ≥ 0,(1.2)

‖∂tu
q+1
2 ‖2L2(Ω∞) + sup

0<t<∞
E(u(t)) ≤ E(u0),(1.3)

where E(u) := ∥∇u∥pp/p is the p−energy of u. Moreover, the solution u is positive and bounded,

0 < u(t, x) ≤ epE(u0)t/q∥u0∥∞ for any (t, x) ∈ Ω∞, and u and its spatial gradient ∇u are locally

in time-space continuous in Ω∞.

We shall study the asymptotic behavior around infinite time of the global solution to (1.1)

obtained in Theorem 1. The global solution of (1.1) strongly or weakly converges to a limit

function in W 1,p
loc (Ω) along a time-sequence increasingly tending to ∞ and the limit function is

naturally a weak solution of the stationary equation corresponding to (1.1)1. In the case of weak

convergence, further, there may appear the so-called energy and volume gap at infinite time,

leading to energy and volume concentration.

The asymptotic profile at a concetration point of the global soluton of (1.1) is shown in the

following result. Applying the concentration-compactness result, we obtain a characterization of

concentration of volume and energy on a microscopic scale, where the term microscopic is borrowed
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We shall study the asymptotic behavior around infinite time of the global solution to (1.1)

obtained in Theorem 1. The global solution of (1.1) strongly or weakly converges to a limit

function in W 1,p
loc (Ω) along a time-sequence increasingly tending to ∞ and the limit function is

naturally a weak solution of the stationary equation corresponding to (1.1)1. In the case of weak

convergence, further, there may appear the so-called energy and volume gap at infinite time,

leading to energy and volume concentration.

The asymptotic profile at a concetration point of the global soluton of (1.1) is shown in the

following result. Applying the concentration-compactness result, we obtain a characterization of

concentration of volume and energy on a microscopic scale, where the term microscopic is borrowed

from the result [12, Lemma 3.4, p.72] for the case p = 2. To state the result, let ρ0 be a fixed small

positive number. Let η = η(x) be a smooth function on IRn such that η = 0 outside B(0, ρ0) and

η = 1 on B(0, ρ0/2).

Theorem 2. (Concentration-compactness) Let 2n
n+2 < p < n and q + 1 = p∗. Let {tk}, tk ↗ ∞

and {rk}, rk ↘ 0 as k → ∞. There exist a subsequence {tk} (non-relabelled), an integer N ,

N−points {xi} ⊂ Ω, subsequence {rk,i} and a sequence Lk,i ↗ ∞ as k → ∞, i = 1, . . . , N , such

that the follwoing convergence holds true:

u(x, tk)−
N∑
i=1

Lk, i (η v)

(
L

q+1−p
p

k, i (x− xi)

)
−→ u∞(x)

strongly and locally in W 1,p ∩ Lq+1(IRn) (k → ∞),(1.4)

where v is a positive and bounded weak solution of −div(|∇v|p−2∇v) = λ∞vq in IRn with a positive

constant λ∞, and v and its gradient ∇v are locally continuous in IRn. Moreover, the volume and

energy decompositions appear at time infinity: As k → ∞,

V(u(tk)) −→ V(u∞) +NṼ(v),(1.5)

E(u(tk)) −→ E(u∞) +N Ẽ(v),(1.6)

where we put

V(u) =

∫

Ω

uq+1 dx, Ṽ(u) =

∫

IRn

uq+1 dx,

E(u) =

∫

Ω

|∇u|p dx, Ẽ =

∫

IRn

|∇u|p dx.

We shall explain the implication of Theorem 2. For this purpose we recall some results on the

asymptotic convergence of the Palais-Smale like sequence. In the Laplacian case p = 2 we have the

global compactness result established by Struwe ([14]). The result was extended to the p−Laplacian

case for 1 < p < n (see [10, 11, 3]). Theorem 2 establishs the so-called volume and energy equalities

and thus, completely characterizes the asymptotic behavior as infinity-time of the nonnegative

solutions to (1.1). See [14, Proposition 2.1, p. 513], [10, Theorem 1.2, pp. 471-472] for the case

1 < p < n.

The limit function v at time-infinity in Theorem 2 is given as the extremal function attaining the

best constant in the Sobolev inequality, called Talenti function. Refer to [15] for the Laplacian

case, [13, 2, 17] for the p−Laplacian case.

− 311 −

ソボレフ流の時間無限大における体積集中について（三沢）



2 Preliminary estimate

We present the local boundedness available for a nonnegative weak solution to (1.1), obtained

in Theorem 1. This is the key estimation for showing the volume concentration at the limit as

time tends to ∞ of a solution of (1.1).

Lemma 3. (Local boundedness) Let 1 < p < n and q + 1 = p∗. Suppose that u is a nonnegative

weak solution to (1.1), obtained in Theorem 1. Let r0 be a positive number satisfying r0E(u0) ≤ 1

and Q(r0) ≡ B (x0, r0)× (t0 − (r0)
p, t0) ⊂ Ω∞. Put γ = p(n+2)

n . There exists a positive constant

δ̂0 = δ̂0(n, p, q) ≤ 1 such that the following holds true: For any positive number δ0 ≤ δ̂0, there

exists a positive number k0 such that

k0 ≥ 1

rn+p
0 δγ0

, 1 =
1

δ0


 1

rn+p
0 k0

+
1

|Q̂|

∫

Q̂

uq+1

kq+1
0

dx dt




1/γ

,(2.1)

where Q̂(k0, r0) ≡ B
(
x0, k

(p−(q+1))/p
0 r0

)
× (t0 − rp0 , t0) , and there holds

u(x0, t0) ≤ 4k0.(2.2)

The proof of Lemma 3 is based on De Giorgi’s type local energy estimates for truncated solutions,

of which the detail will be appeared in a fothcoming paper. Here we shall show how to determine

the local boundedness constant, of which the way is intrinsic to a solution and may be of its own

interest. We emphasize that the equation (2.1) corresponds to (2.3) in the following proposition.

Proposition 4. (Intrinsic local boundedness) Let r0 > 0 and δ0 ∈ (0, 1). Let Q(r0) = B (x0, r0)×
(t0 − (r0)

p, t0) ⊂ Ω∞. Put β = p(q−1)
n and γ = p(n+2)

n (so that β + γ = q + 1 = p∗). Then there

is a unique positive real number k0 such that if u ∈ Lq+1(Q(r0)) and u ≥ 0, then there is a unique

solution k0, k0 ≥ r−n−p
0 δ−γ

0 , to the equation

k0 =
1

δ0


k−1+γ

0

rn+p
0

+−
∫

Q̂(k0,r0)

uβ

kβ
0

uγ dx dt




1/γ

,(2.3)

where Q̂(k0, r0) = B
(
x0, k

(p−(q+1))/p
0 r0

)
× (t0 − (r0)

p, t0) . Moreover, the root satisfies k0 ≡

k(u, r0, δ0) ↗ ∞ as r0 ↘ 0 or δ0 ↘ 0.
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Proof. Since

−
∫

Q̂(k0,r0)

uβ

kβ
0

uγ dx dt =
k
−β+n

p
(q+1−p)

0

rn+p
0 |B(0, 1)|

∫

Q̂(k0,r0)

uβ+γ dx dt

and

−β +
n

p
(q + 1− p) = γ − q − 1 +

n

p
(q + 1)− n = γ +

n− p

p
(q + 1)− n = γ ,

we have that


k−1+γ

0

rn+p
0

+−
∫

Q̂(k0,r0)

uβ

kβ
0

uγ dx dt




1/γ

= k0


 1

rn+p
0


 1

k0
+

1

|B(0, 1)|

∫

Q̂(k0,r0)

uq+1 dx dt







1/γ

.(2.4)

The function

k0 �→ h(k0) , h(k0) =
1

rn+p
0


 1

k0
+

1

|B(0, 1)|

∫

Q̂(k0,r0)

uq+1 dx dt


 ,

is continuous and strictly decreasing function of k0 and h(k0) ↓ 0 as k0 ↑ ∞ for any given r0 > 0.

Moreover h(r−n−p
0 ) ≥ 1. Therefore there must be a unique k∗0 > r−n−p

0 such that

h(k∗
0) = δγ0 .

It is easy to see that this root converges to infinity as r0 or δ0 tends to zero. This proves the claim.

By the use of Lemma 3 we show the uniform local boundedness for solutions of (1.1).

Lemma 5. (Uniform boundedness) Let 1 < p < n and q+1 = p∗. Suppose that u is a nonnegative

weak solution to (1.1), obtained in Theorem 1. Suppose that, for some positive numbrs ε0, r0 ≤ 1

and Q(r0) = B(x0, r0)× (t0 − rp0 , t0) ⊂ Ω∞,

−

t0∫

t0−r
p
0

‖u(t)‖q+1

Lq+1(B(x0, r0))
dt ≤ ε0.(2.5)
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Then there holds, for positive numbers r′0 = r′0(r0, ε0), C = C(r0, ε0) and Q(r′0) = B(x0, r
′
0) ×

(t0 − (r′0)
p, t0),

sup
(x, t)∈Q(r′

0
)

|u| ≤ C.(2.6)

Proof. Let (x′
0, t

′
0) ∈ Q(r0/2) be an arbitrarily taken and fixed. We shall employ Lemma 3

for the proof, where r0 and (x0, t0) are replaced by r0/2 and (x′
0, t

′
0), respectively. Clearly,

Q′(r0/2) ≡ B(x′
0, r0/2) × (t′0 − (r0/2)

p, t′0) is contained in Q(r0). Let k0 be chosen as in

(2.1) of Lemma 3. From
n(p− (q + 1))

p
= − np

n− p
= −(q + 1) and (2.5), it follows that, letting

Q̂′(k0, r0/2) ≡ B
(
x′
0, k

(p−(q+1))/p
0 (r0/2)

)
×
(
t′0 − (r0/2)

p, t′0
)
,

−
∫

Q̂′(k0,r0/2)

uq+1

kq+1
0

dx dt =
2n+p

rn+p
0 |B(1)|

∫

Q(r0)

uq+1 dx dt ≤ 2n+pε0
rn0 |B(1)| ,(2.7)

where we note that k0 ≥ 1 by δ0 ≤ 1 and r0 ≤ 1. Choosing k′0 ≥ k0 so large that

1

δγ0

(
1

rn+p
0 k′

0

+
2n+pε0
rn0 |B(1)|

)
is very close to

2n+pε0
δγ0 r

n
0 |B(1)| ,(2.8)

we obtain from (2.2) in Lemma 3 that

u(x′
0, t

′
0) ≤ 4k′

0 for any (x′
0, t

′
0) ∈ Q(r0/2).(2.9)

Here we notice the dependence of k′0, k
′
0 = k′0 (r0, δ0, ε0, n, p), and thus, the assertion (2.6) follows

from (2.9), letting r′0 = (k′
0)

p−(q+1)
p (r0/2)(≤ r0/2).

3 Concentration phenomenon

We shall present the proof of Theorem 2. For this purpose we prepare two lemmata.

First we shall show the asymptotic behavior of the global solution of (1.1), obtained in Theo-

rem 1. This controls the global solution of (1.1) at infinite time and leads to deriving the asymptotic

convergence to a limit function which is a stationary solution corresponding to (1.1).

Lemma 6. (ε−strong compactness) Let 2n
n+2 < p < n and q + 1 = p∗. Let {tk}, tk ↗ ∞ as

k → ∞. There exist subsequence {tk} (non-relabelled), a positive number ϵ0 > 0 and at most finite
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First we shall show the asymptotic behavior of the global solution of (1.1), obtained in Theo-

rem 1. This controls the global solution of (1.1) at infinite time and leads to deriving the asymptotic

convergence to a limit function which is a stationary solution corresponding to (1.1).

Lemma 6. (ε−strong compactness) Let 2n
n+2 < p < n and q + 1 = p∗. Let {tk}, tk ↗ ∞ as

k → ∞. There exist subsequence {tk} (non-relabelled), a positive number ϵ0 > 0 and at most finite

points {x1, . . . , xN} ⊂ Ω, 0 < N < ∞, such that there holds for any positive number r ≤ 1 and all

i = 1, . . . , N,

lim inf
k↗∞

−

tk∫

tk−rp

‖u(t)‖q+1

Lq+1(B(xi, r))
dt ≥ ε0(3.1)

and the sequence {u(tk)} is strongly convergent in the Sobolev space W 1,p on any compact subset

of Ω \ {x1, . . . , xN}.

Proof. First we notice that the conditions, 2n
n+2 < p < n and q + 1 = p∗, imply that q ≥ 1. Let

u be nonnegative weak solution to (1.1), obtained in Theorem 1.

We shall show the following: There exists a sequence of times {τk}, τk ↗ ∞ as k → ∞ such

that the sequence of solutions {u(τk)} converges to a weak solution of the stationary equation

corresponding to (1.1).

First we take a subsequence {t′′k} of {t′k} such that t′′k+1 − t′′k ≥ 1 for all k = 1, . . . and t′′k ↗ ∞ as

k → ∞. Write as I(k) =
(
t′′k , t

′′
k+1

)
, k = 1, . . .. Now we prove that there exists a sequence {τk}

such that τk ∈ I(k), k = 1, . . ., τk ↗ ∞ as k → ∞ and

lim
k→∞

∫

Ω

|∂tuq(τk)| dx = 0.(3.2)

Indeed, by (1.3) in Theorem 1 there holds

∞∑
k=1

−
∫

I(k)

∫

Ω

∣∣∣∂tu q+1
2

∣∣∣
2

dx dt ≤
∞∫

0

∫

Ω

∣∣∣∂tu q+1
2

∣∣∣
2

dx dt < ∞,

where we use that the length |I(k)| of I(k) is larger than 1 by the choice of t′′k . From the mean-value

theorem, for each k = 1, . . . there exists a number τk ∈ I(k) such that, as k → ∞,

∫

Ω

∣∣∣∂tu q+1
2 (τk)

∣∣∣
2

dx ≤ −
∫

I(k)

∫

Ω

∣∣∣∂tu q+1
2

∣∣∣
2

dx dt → 0.

For q ≥ 1 the chain rule of weak differential enables us to compute as

∂tu
q =

2q

q + 1
u

q−1
2 ∂tu

q+1
2 ,(3.3)

since the function z
2q

q+1 is locally Lipschitz on z ∈ [0,∞). The fact above and the Hölder inequality
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yield the estimation

∫

Ω

|∂tu
q(τk)| dx ≤ 2q

q + 1
‖u

q−1
2 (τk)‖2‖∂tu

q+1
2 (τk)‖2

≤ 2q

q + 1
|Ω|

1
q+1 sup

t∈(0,∞)

‖u(t)‖
q−1
2

q+1 ‖∂tu
q+1
2 (τk)‖2

≤ ‖u0‖
q−1
2

q+1 ‖∂tu
q+1
2 (τk)‖2 −→ 0

as k → ∞, which gives (3.2).

Next we claim that the integral equation

∫

Ω

(
∂tu

q(τk)ϕ+ |∇u|p−2∇u(τk) · ∇ϕ− (λuq)(τk)ϕ
)
dx = 0(3.4)

holds true for any ϕ ∈ C∞
0 (Ω).

Let 0 < ε, h ↘ 0 and define a cut-off function on time ηh = ηh(t) such that ηh is Lipschitz on IR,

ηh = 1 in [τk − ε + h, τk + ε − h], ηh = 0 in IR \ (τk − ε, τk + ε) and |∂tηh| ≤ 1/h in IR. Then,

we use the test function ϕηh in the weak form of (1.1)1. Noting the integrability of each term

appearing in the resulting equality, by the Lebesgue convergence theorem we pass to the limit as

h ↘ 0 and have

τk+ε∫

τk−ε



∫

Ω

(
∂tu

qϕ+ |∇u|p−2∇u · ∇ϕ− (λuq)ϕ
)
dx


 dt = 0

and then, dividing the both side of the above equation by 2ε, from the Lebesgue’s differenrtial

theorem available for integrable functions we can take the limit as ε ↘ 0 in the resulting equation

to obtain the claim (3.4).

From (1.2) and (1.3) in Theorem 1 we see that the sequence {u(τk)} is bounded in W 1,p(Ω)

and thus, by the compactness of Sobolev empbedding into the Lebesgue space we have a (non-

relabeled) subsequence {τk}, the limit function w ∈ W 1,p
0 (Ω) and a finite number λ∞ such that,

as k → ∞,

u(τk) −→ w weakly in W 1,p(Ω),

u(τk) −→ w strongly in Lr(Ω), ∀r ∈ [1, p∗), and almost everywhere Ω,

λ(τk) −→ λ∞,(3.5)

where we use Mazur’s theorem verifying that the closed subspace W 1,p
0 (Ω) of W 1,p(Ω) is weakly

closed in W 1,p(Ω).
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yield the estimation

∫

Ω

|∂tu
q(τk)| dx ≤ 2q

q + 1
‖u

q−1
2 (τk)‖2‖∂tu

q+1
2 (τk)‖2

≤ 2q

q + 1
|Ω|

1
q+1 sup

t∈(0,∞)

‖u(t)‖
q−1
2

q+1 ‖∂tu
q+1
2 (τk)‖2

≤ ‖u0‖
q−1
2

q+1 ‖∂tu
q+1
2 (τk)‖2 −→ 0

as k → ∞, which gives (3.2).

Next we claim that the integral equation

∫

Ω

(
∂tu

q(τk)ϕ+ |∇u|p−2∇u(τk) · ∇ϕ− (λuq)(τk)ϕ
)
dx = 0(3.4)

holds true for any ϕ ∈ C∞
0 (Ω).

Let 0 < ε, h ↘ 0 and define a cut-off function on time ηh = ηh(t) such that ηh is Lipschitz on IR,

ηh = 1 in [τk − ε + h, τk + ε − h], ηh = 0 in IR \ (τk − ε, τk + ε) and |∂tηh| ≤ 1/h in IR. Then,

we use the test function ϕηh in the weak form of (1.1)1. Noting the integrability of each term

appearing in the resulting equality, by the Lebesgue convergence theorem we pass to the limit as

h ↘ 0 and have

τk+ε∫

τk−ε



∫

Ω

(
∂tu

qϕ+ |∇u|p−2∇u · ∇ϕ− (λuq)ϕ
)
dx


 dt = 0

and then, dividing the both side of the above equation by 2ε, from the Lebesgue’s differenrtial

theorem available for integrable functions we can take the limit as ε ↘ 0 in the resulting equation

to obtain the claim (3.4).

From (1.2) and (1.3) in Theorem 1 we see that the sequence {u(τk)} is bounded in W 1,p(Ω)

and thus, by the compactness of Sobolev empbedding into the Lebesgue space we have a (non-

relabeled) subsequence {τk}, the limit function w ∈ W 1,p
0 (Ω) and a finite number λ∞ such that,

as k → ∞,

u(τk) −→ w weakly in W 1,p(Ω),

u(τk) −→ w strongly in Lr(Ω), ∀r ∈ [1, p∗), and almost everywhere Ω,

λ(τk) −→ λ∞,(3.5)

where we use Mazur’s theorem verifying that the closed subspace W 1,p
0 (Ω) of W 1,p(Ω) is weakly

closed in W 1,p(Ω).

We also have the following strong convergence of gradients: There exists a (non-relabeled) subse-

quence {u(τk)} such that

∇u(τk) −→ ∇w strongly in Lr(Ω), ∀r ∈ [1, p),(3.6)

of which the proof is referred in [9, Lemma 5.3, p. 19, Appendix E, p. 43].

By means of the convergences (3.2), (3.5) and (3.6) we have the identity holding true for any

ϕ ∈ C∞(Ω)

∫

Ω

(
|∇w|p−2∇w · ∇ϕ− λ∞wqϕ

)
dx = 0.(3.7)

Further we can verify that the sequence {u(τk)} strongly converges to the limit w in W 1,p(Ω \
N ) for some set of finitely many points N = {x1, . . . , xN}. In fact we shall demonstrate the

convergence

∇u(τk) −→ ∇w strongly in Lp

loc(Ω \ N ).(3.8)

For the proof we shall employ the local boundedness of the solution to (1.1).

Fix x0 ∈ Ω and assume that for some positive r0 ≤ 1 there holds

lim inf
k↗∞

−

tk∫

tk−r
p
0

‖u(t)‖q+1

Lq+1(B(x0, r0))
dt < ε0.

Then we choose a subsequence {t′k} of {tk} such that

−

t′
k∫

t′
k
−r

p
0

‖u(t)‖q+1

Lq+1(B(x0, r0))
dt ≤ ε0.(3.9)

Applying Lemma 5 with (3.9), we have positive numbers r′0 = r′0(r0, ε0), C = C(r0, ε0) and

Q(r0;x0, t
′
k) ≡ B(x0, r

′
0)× (t′k − (r′0)

p, t′k) such that

sup
Q(r0;x0,t

′
k
)

|u| ≤ C,(3.10)

yielding the uniform boundedness in B(x0, r0) of the solutions {u(t′k)}, k = 1, . . ..

Next we shall show the validity of the following convergences as k → ∞:

∫

Ω

∂tu(τk) (u(τk)− w) dx −→ 0,(3.11)

∫

B(x0,r
′
0
/2)

(uq(τk)− wq) (u(τk)− w) dx −→ 0.(3.12)
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Noting (3.3) again we estimate as

∫

Ω

|∂tu(τk)||u(τk)− w| dx ≤ 2q

q + 1

∫

Ω

|∂tu
q+1
2 (τk)|

(
u

q+1
2 (τk) + u

q−1
2 (τk)|w|

)
dx

≤ 2q

q + 1
‖∂tu

q+1
2 (τk)‖2

(
‖u(τk)‖

q+1
2

q+1 + ‖u(τk)‖q−1
q+1‖w‖q+1

)
,(3.13)

where the Hölder inequality is used in the second inequality with q ≥ 1. Thus, the convergence

(3.11) follows from (3.3).

For the proof of (3.12) we note the strong integral convergence as

u(τk) −→ w strongly in Lγ(B(x0, r
′
0)) for any finite γ ≥ 1,(3.14)

by the use of the convergence (3.5)2 and the uniform boundedness (3.10). By the Hölder inequality

we simply estimate and take the limit as k → ∞ in the resulting inequality as

∫

B(x0,r
′
0
)

|uq(τk)− wq| |u(τk)− w| dx ≤
∫

B(x0,r
′
0
)

(|u(τk)|q + |w|q) |u(τk)− w| dx

≤
(
‖u(τk)‖qq+1 + ‖w‖qq+1

)
‖u(τk)− w‖Lq+1(B(x0,r

′
0
)) −→ 0,

where the convergence (3.14) is used in the last line. The validity of (3.12) is shown.

Here we recall the algebraic inequalities as follows (Refer the proof in [1, Lemma 2.2] and [4,

inequality (24)]) : There holds for any vectors P,Q ∈ IRn that

(
|P |p−2P − |Q|p−2Q

)
· (P −Q) ≥ C1 (|P |+ |Q|)p−2 |P −Q|2 ,

∣∣|P |p−2P − |Q|p−2Q
∣∣ ≤ C2 (|P |+ |Q|)p−2 |P −Q| .(3.15)

Now we subtract (3.7) from (3.4) and use the test function η2 (u(τk)− w) in the resulting equation,

where the function η = η(x) is Lipschitz on IRn such that η = 1 in B(x0, r
′
0/2), η = 0 outside

B(x0, r
′
0) and |∇η| ≤ 2/r′0. By the use of (3.15) we have, if p > 2,

C′
∫

B(x0,r
′
0
)

η2 |∇u(τk)−∇w|p dx

≤ C

∫

B(x0,r
′
0
)

|∇η|2 (|∇u(τk)|+ |∇w|)p−2 |u(τk)− w|2 dx

−
∫

B(x0,r
′
0
)

η2∂tu(τk) (u(τk)− w) dx+ λ∞

∫

B(x0,r
′
0
)

η2 (uq(τk)− wq) (u(τk)− w) dx
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Noting (3.3) again we estimate as

∫

Ω

|∂tu(τk)||u(τk)− w| dx ≤ 2q

q + 1

∫

Ω

|∂tu
q+1
2 (τk)|

(
u

q+1
2 (τk) + u

q−1
2 (τk)|w|

)
dx

≤ 2q

q + 1
‖∂tu

q+1
2 (τk)‖2

(
‖u(τk)‖

q+1
2

q+1 + ‖u(τk)‖q−1
q+1‖w‖q+1

)
,(3.13)

where the Hölder inequality is used in the second inequality with q ≥ 1. Thus, the convergence

(3.11) follows from (3.3).

For the proof of (3.12) we note the strong integral convergence as

u(τk) −→ w strongly in Lγ(B(x0, r
′
0)) for any finite γ ≥ 1,(3.14)

by the use of the convergence (3.5)2 and the uniform boundedness (3.10). By the Hölder inequality

we simply estimate and take the limit as k → ∞ in the resulting inequality as

∫

B(x0,r
′
0
)

|uq(τk)− wq| |u(τk)− w| dx ≤
∫

B(x0,r
′
0
)

(|u(τk)|q + |w|q) |u(τk)− w| dx

≤
(
‖u(τk)‖qq+1 + ‖w‖qq+1

)
‖u(τk)− w‖Lq+1(B(x0,r

′
0
)) −→ 0,

where the convergence (3.14) is used in the last line. The validity of (3.12) is shown.

Here we recall the algebraic inequalities as follows (Refer the proof in [1, Lemma 2.2] and [4,

inequality (24)]) : There holds for any vectors P,Q ∈ IRn that

(
|P |p−2P − |Q|p−2Q

)
· (P −Q) ≥ C1 (|P |+ |Q|)p−2 |P −Q|2 ,

∣∣|P |p−2P − |Q|p−2Q
∣∣ ≤ C2 (|P |+ |Q|)p−2 |P −Q| .(3.15)

Now we subtract (3.7) from (3.4) and use the test function η2 (u(τk)− w) in the resulting equation,

where the function η = η(x) is Lipschitz on IRn such that η = 1 in B(x0, r
′
0/2), η = 0 outside

B(x0, r
′
0) and |∇η| ≤ 2/r′0. By the use of (3.15) we have, if p > 2,

C′
∫

B(x0,r
′
0
)

η2 |∇u(τk)−∇w|p dx

≤ C

∫

B(x0,r
′
0
)

|∇η|2 (|∇u(τk)|+ |∇w|)p−2 |u(τk)− w|2 dx

−
∫

B(x0,r
′
0
)

η2∂tu(τk) (u(τk)− w) dx+ λ∞

∫

B(x0,r
′
0
)

η2 (uq(τk)− wq) (u(τk)− w) dx

+(λ(τk)− λ∞)

∫

B(x0,r
′
0
)

η2uq(τk) (u(τk)− w) dx(3.16)

−→ 0 as k → ∞,

where we use the convergences (3.11), (3.12) and (3.5)3.

If 1 < p < 2 we use (3.15) to have the inequality

∫

B(x0,r
′
0
)

η2 |∇u(τk)−∇w|p dx

≤




∫

B(x0,r
′
0
)

η2 (|∇u(τk)|+ |∇w|)p−2 |∇u(τk)−∇w|2 dx




p
2

×




∫

B(x0,r
′
0
)

η2 (|∇u(τk)|+ |∇w|)p dx




2−p
2

≤ C




∫

B(x0,r
′
0
)

η2
(
|∇u(τk)|p−2∇u(τk)− |∇w|p−2∇w

)
· (∇u(τk)−∇w) dx




p
2

×




∫

B(x0,r
′
0
)

η2 (|∇u(τk)|+ |∇w|)p dx




2−p
2

.

At this stage we evaluate the last term in the above inequality. The integral term in the 1st brace

is equal to the same as 3rd one in (3.16) and the integral term in the 2nd brace is bounded by (1.3)

in Theorem 1. Thus, from the same reasoning as (3.16) this last term converges to 0 as k → ∞.

Therefore we have that ∇u(τk) converges to ∇w strongly in Lp(B(x0, r
′
0/2)) as k → ∞. The con-

vergence (3.8) follows from by a usual covering argument with the strong convergence of gradients

above.

The finiteness of concetration points N in (3.1) is verfied as follows: We compute as

N∑
i=1

−

t′
k∫

t′
k
−r

p
0

‖u(t)‖q+1

Lq+1(B(xi, r0))
dt = −

t′
k∫

t′
k
−r

p
0

N∑
i=1

‖u(t)‖q+1

Lq+1(B(xi, r0))
dt

= −

t′
k∫

t′
k
−r

p
0

‖u(t)‖q+1

Lq+1(∪N
i=1

B(xi, r0))
dt
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≤ −

t′
k∫

t′
k
−r

p
0

‖u(t)‖q+1

Lq+1(Ω)
dt = 1,

where we use (1.2) in the last line. Taking the limitinf on k ↗ ∞ in both side of the above

inequality yields the estimation

Nε0 ≤
N∑
i=1

lim inf
k↗∞

−

t′
k∫

t′
k
−r

p
0

‖u(t)‖q+1

Lq+1(B(xi, r0))
dt

≤ lim inf
k↗∞

N∑
i=1

−

t′
k∫

t′
k
−r

p
0

‖u(t)‖q+1

Lq+1(B(xi, r0))
dt ≤ 1

and thus,

N ≤ 1

ε0
.(3.17)

The proof of Lemma 6 is completed.

The next result yields the asymptotic profile around a concetration point at infinite time of the

global soluton of (1.1).

Lemma 7. (Volume and energy concentration) Let 2n
n+2 < p < n and q + 1 = p∗. Let {tk},

tk ↗ ∞ and {rk}, rk ↘ 0 as k → ∞. There exist a positive number ϵ0 > 0, an integer N ,

N−points {xi} ⊂ Ω, subsequences {tk,i}, {rk,i} and a sequence of positive numbers Lk,i ↗ ∞ as

k → ∞, i = 1, . . . , N , such that the followings hold for each xi, i = 1, . . . , N : For brevity, letting

x′ = xi, tk = tk,i, rk = rk,i and Lk = Lk,i,

lim inf
k↗∞

‖u(tk)‖q+1

Lq+1(B(x′, rk))
≥ ε0;

vk(x) := L−1
k u

(
x′ + L

p−(q+1)
p

k x, tk

)
−→ v(x)

strongly and locally in W 1,p ∩ Lq+1(IRn) (k → ∞),(3.18)

where v is a positive and bounded weak solution of −div(|∇v|p−2∇v) = λ∞vq in IRn with a positive

constant λ∞, and v and its gradient ∇v are locally continuous in IRn.

Proof. Let x0 = xi, i = 1, . . . , N be any point where (3.1) holds true for any positive r ≤ 1. Let

{tk}, tk ↗ ∞ as k → ∞. Let {rl} be a sequence of postive numbers rl ↘ 0 as l → ∞. Then, by
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≤ −

t′
k∫

t′
k
−r

p
0

‖u(t)‖q+1

Lq+1(Ω)
dt = 1,

where we use (1.2) in the last line. Taking the limitinf on k ↗ ∞ in both side of the above

inequality yields the estimation

Nε0 ≤
N∑
i=1

lim inf
k↗∞

−

t′
k∫

t′
k
−r

p
0

‖u(t)‖q+1

Lq+1(B(xi, r0))
dt

≤ lim inf
k↗∞

N∑
i=1

−

t′
k∫

t′
k
−r

p
0

‖u(t)‖q+1

Lq+1(B(xi, r0))
dt ≤ 1

and thus,

N ≤ 1

ε0
.(3.17)

The proof of Lemma 6 is completed.

The next result yields the asymptotic profile around a concetration point at infinite time of the

global soluton of (1.1).

Lemma 7. (Volume and energy concentration) Let 2n
n+2 < p < n and q + 1 = p∗. Let {tk},

tk ↗ ∞ and {rk}, rk ↘ 0 as k → ∞. There exist a positive number ϵ0 > 0, an integer N ,

N−points {xi} ⊂ Ω, subsequences {tk,i}, {rk,i} and a sequence of positive numbers Lk,i ↗ ∞ as

k → ∞, i = 1, . . . , N , such that the followings hold for each xi, i = 1, . . . , N : For brevity, letting

x′ = xi, tk = tk,i, rk = rk,i and Lk = Lk,i,

lim inf
k↗∞

‖u(tk)‖q+1

Lq+1(B(x′, rk))
≥ ε0;

vk(x) := L−1
k u

(
x′ + L

p−(q+1)
p

k x, tk

)
−→ v(x)

strongly and locally in W 1,p ∩ Lq+1(IRn) (k → ∞),(3.18)

where v is a positive and bounded weak solution of −div(|∇v|p−2∇v) = λ∞vq in IRn with a positive

constant λ∞, and v and its gradient ∇v are locally continuous in IRn.

Proof. Let x0 = xi, i = 1, . . . , N be any point where (3.1) holds true for any positive r ≤ 1. Let

{tk}, tk ↗ ∞ as k → ∞. Let {rl} be a sequence of postive numbers rl ↘ 0 as l → ∞. Then, by

(3.1) we have, for any rl, l = 1, . . .,

lim inf
k↗∞

−

tk∫

tk−(rl)
p

‖u(t)‖q+1

Lq+1(B(x0, rl))
dt ≥ ε0(3.19)

and from the mean-value theorem there exists a number tkl, tk−(rl)
p < tkl < tk for each k, l = 1, . . .

such that

‖u(tkl)‖q+1
q+1 = −

tk∫

tk−(rl)
p

‖u(t)‖q+1

Lq+1(B(x0, rl))
dt.(3.20)

By Cantor’s diagonal argument, (3.19) and (3.20) we can take subsequences {r′k} of {rl} and {t′kk}
of {tkl} such that tk − (r′k)

p < t′kk < tk and

t′kk ↗ ∞, r′k ↘ 0 as k → ∞,

lim inf
k↗∞

‖u(t′kk)‖q+1

Lq+1(B(x0, r
′
k
))
≥ ε0

2
.(3.21)

Let us write {t′kk} as {tk} and {r′k} as {rk}.
Hereafter we shall fix k = 1, . . . and write as t0 = tk and r0 = rk. Let Q(r0) = B(x0, r0) ×

(t0 − (r0)
p, t0). Let (x′

0, t
′
0) ∈ Q(r0) be arbitrarily taken and be fixed. Make a local prabolic

cylinder Q′(r0) = B(x′
0, r0)× (t′0 − (r0)

p, t′0) with vertex at (x′
0, t

′
0). We now employ Lemma 3 in

Q′(r0). Thus, we have positive numbers δ0 ≤ 1 and L′ such that

L′ ≥ (r0)
−n−pδ−γ

0 ,

Q̂′(L′, r0) = B
(
x′
0, (L

′)(p−(q+1))/pr0
)
×
(
t′0 − (r0)

p, t′0
)
,

1 =
1

δ0


 1

(r0)n+pL′ +
1

|Q̂′(L′, r0)|

∫

Q̂′(L′,r0)

uq+1

(L′)q+1
dx dt




1/γ

,(3.22)

u(x′
0, t

′
0) ≤ 4L′.(3.23)

Here, in (3.22)3 and (3.23), the positive number L′ may depend on (x′
0, t

′
0). Now we claim that

the positive numbers L′ is bounded uniformly on (x′
0, t

′
0). Indeed there exists a positive L > L′

such that

L ≥ (2r0)
−n−pδ−γ

0 ,

1

(δ0)γ


 1

(r0)n+pL
+

1

|Q(r0)|

∫

Q(2r0)

uq+1 dx dt


 <

2

(δ0)γ |Q(r0)|

∫

Q(2r0)

uq+1 dx dt(3.24)
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Because the positive constant L in (3.24) does not depend on any (x′
0, t

′
0) ∈ Q. In fact, for any

positive l ≥ 1 and any point (x′
0, t

′
0) ∈ Q(r0), Q̂

′(l, r0) is contained in Q(2r0) and thus, we have,

1

δ0


 1

(r0)n+pl
+

1

|Q̂′(l, r0)|

∫

Q̂′(l,r0)

uq+1

lq+1
dx dt




1/γ

=
1

δ0


 1

(r0)n+pl
+

1

|B(1)|rn+p
0

∫

Q̂′(l,r0)

uq+1 dx dt




1/γ

<
1

δ0


 1

(r0)n+pl
+

1

|Q(r0)|

∫

Q(2r0)

uq+1 dx dt




1/γ

.(3.25)

L′ is a root of the equation (3.22) and L is that of the equation: 1 = the left hand side of (3.24),

and thus, L doed not dpend on (x′
0, t

′
0) ∈ Q and L′ < L.

Therefore from (3.23) and the observation above it follows that

u(x′
0, t

′
0) ≤ 4L for any (x′

0, t
′
0) ∈ Q.(3.26)

We write L as Lk to indicate the dependence of L on tk and rk. Now we introduce the scaled

solution defined as

vk(x, t) =

u

(
x0 + L

p−(q+1)
p

k x, tk + t

)

Lk
,(3.27)

(x, t) ∈ Q′(k) = B(k)× J(k), B(k) = B

(
0, rkL

q+1−p
p

k

)
, Jk = (−(rk)

p, 0) .

From (3.24)1, the space-width of Q′(k) is computed as

rkL
q+1−p

p

k ≥ (δ0)
− pγ

n−p (rk)
−p(1+n+p)−n

n−p ↗ ∞ as k → ∞,(3.28)

because −p(1+n+p)−n
n−p < 0 and δ0 is a fixed positive number, and the time-length (rk)

p ↘ 0 as

k → ∞, and thus, the sequence of sets {Q′(k)} converges to all of space IRn. By (3.26), we have

the boundedness

sup
Q′(k)

vk ≤ 4(3.29)

and compute the integral quantities of vk for any t ∈ (−(rk)
p, 0) , as

‖vk(t)‖Lq+1(B(k)) = ‖u(tk + t)‖Lq+1(B(x0, rk)
,(3.30)
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p−(q+1)
p

k x, tk + t

)
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,(3.27)

(x, t) ∈ Q′(k) = B(k)× J(k), B(k) = B

(
0, rkL

q+1−p
p

k

)
, Jk = (−(rk)

p, 0) .

From (3.24)1, the space-width of Q′(k) is computed as

rkL
q+1−p

p

k ≥ (δ0)
− pγ

n−p (rk)
−p(1+n+p)−n

n−p ↗ ∞ as k → ∞,(3.28)

because −p(1+n+p)−n
n−p < 0 and δ0 is a fixed positive number, and the time-length (rk)

p ↘ 0 as

k → ∞, and thus, the sequence of sets {Q′(k)} converges to all of space IRn. By (3.26), we have

the boundedness

sup
Q′(k)

vk ≤ 4(3.29)

and compute the integral quantities of vk for any t ∈ (−(rk)
p, 0) , as

‖vk(t)‖Lq+1(B(k)) = ‖u(tk + t)‖Lq+1(B(x0, rk)
,(3.30)

‖∇vk(t)‖Lp(B(k)) = ‖∇u(tk + t)‖Lp(B(x0,rk),(3.31)

0∫

−(rk)
p

‖∂tv
q+1
2

k (t)‖2L2(B(k)) dt =

tk∫

tk−(rk)
p

‖∂tu
q+1
2 (t)‖2L2(B(x0,rk/2))

dt.(3.32)

By virtue of the boundedness (1.2) and (1.3) we can argue similarly as (3.2)-(3.7) to have sub-

sequences {t′k}, {r′k} (non-relabelled), a sequence {τk} and the limit v ∈ W 1,p ∩ Lq+1(IRn) such

that

(3.33)

t′k+1 − t′k ≥ 1, τk ∈
(
t′k − (r′k)

p, t′k
)

for all k = 1, . . . ,
∫

B(k)

∣∣∣∂tv
q+1
2

k (τk)
∣∣∣
2

dx −→ 0 as k → ∞,

∫

IRn

(
∂tv

q
k(τ

′
k)ϕ+ |∇vk(τk)|p−2∇vk(τk) · ∇ϕ− (λvqk)(τk)

)
dx = 0 for all ϕ ∈ C∞

0 (IRn),

vk(τk) −→ v weakly in W 1,p(IRn),

vk(τk) −→ v strongly in Lr(IRn), ∀r ∈ [1, p∗), and almost everywhere IRn,

λ(τk) −→ λ∞,

∇vk(τk) −→ ∇v strongly in Lr(IRn), ∀r ∈ [1, p),
∫

IRn

(
|∇v|p−2∇v · ∇ϕ− λ∞vqϕ

)
dx = 0 for all ϕ ∈ C∞

0 (IRn).

Further we have the strong convergence of gradients

∇vk(τk) −→ ∇v strongly and locally in Lp(IRn),(3.34)

of which the proof is performed similarly as in (3.11)-(3.16) by the use of (3.29).

Finally, the limit function v is a non-negative bounded weak solution of the stationary equation

on IRn as (3.33)8, where the boundedness follows from the boundedness (3.29) and the almost

everywhere convergence (3.33)5, and thus, v and its gradient ∇v are locally continuous in IRn

by the regularity of the p−Laplace equation. The limit v is not identically zero in IRn from the

non-vanishing local-volume (3.21) and the strong convergence (3.33)5 and thus, v is positive in IRn

by the strong maximum principle for the p−Laplace operator in [16].

The proof of Lemma 7 is completed.
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Proof of Theorem 2. Now we shall give the proof of Theorem 2.

The validity of (1.4) follows from (3.18) in Lemma 7, where we choose the time-sequence {tk}
as the common subsequence of {tk,i}, i = 1, . . . , N . Any boundary concentration never appears

because the limit function around a concentration point on boundary ∂Ω is a positive stationary

solution with zero Dirichlet boundary condition in the half space IRn
+, which, however should be

trivial from the Liouville type result in [10, Theorem 1.1, pp. 470-471], where the strong maximum

principle takes an important role (refer to [16]). Thus, the concentration points are only in the

interior of the domain Ω.

The volume and energy concentrations (1.5) and (1.6) is shown similarly as in [10, Proof of Theorem

1.2, Sect. 4]. Here we notice that the solutions {u(tk)} of (1.1) is just a Palais-Smale like sequence

for the functional (1/p)E(u) + (1/(q + 1))λ∞V(u) on W 1,p
0 (Ω), which is verified in the proof of

Lemma 6.
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