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Abstract

We study a doubly nonlinear parabolic equation describing the gradient flow associated with
the Sobolev inequality, called as p—Sobolev flow. We show that the asymptotic behavior of the
p—>Sobolev flow at time-infinity is characterized by the so-called volume and energy concetration

phenomenon.

Mathematics Subject Classification (2000): 35D10 (primary);
35D05, 35B65, 35K50, 35K65 (secondary).

1 Introduction

In this report we consider the following doubly nonlinear degenerate and singular parabolic

equation, called p—Sobolev flow,

Oru? — div (|Vu\p_2Vu) = A(t)u? in Qs := Q2 x (0,00)
(1.1) lu(t)]|g+1 =1 fort >0
u = up on 9,Qss := 9N x (0, 00)

Here © be a bounded domain in IR™ (n > 3) with smooth boundary 92, p > 1, p < g+ 1 < p*

with p* = n"—_’; if 1 < p < n and any finite positive number if p > n, u = u(z, t) is a nonnegative
function defined for (z, t) € Quo, Vo = 0/024, a =1,...,m, Vu = (V,u) is the spatial gradient
of a function u, |Vu|? = Y1 (Vu)? and dyu is the derivative on time ¢. The initial and boundary
data ug = uo(z) is in the Sobolev space W*(2), nonnegative, bounded and |[uo|/qs1 = 1. The

function A(¢) is computed by the condition (1.1)5 as follows: Multiply the equation in (1.1); by u

(x) TRRRRESS ) e (HARFERFEEE) o SRBZEET 2 TR E) BG5S ORM. Z OFRIEE IR
K (eXk#E+ > %), Tuomo Kuusi & (University of Helsinki) ¥ OHFEIIFZEIC K 5. T2, #HEH ORI DOHEMET
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and integrate the resulting one by parts on space to have

iLHU(t)HZﬂ +IVu®)lp = MO u®)lfi = A = Va3,

where || f]|, is the LP(©)—norm of a function f. The system above describes the negative directed
gradient flow in the constrained extremal problem for the p—energy. The corresponding Euler-
Lagrange equation is given as the p—Laplace type equation, which has only trivial solution if the
domain € is star-shaped with the origin. This fact is verified by a Pohozaev type identity and
Hopf’s maximum principle, which are proved through the regularized p—Laplace equation (see
[5]). Thus, a solution of the evolution equation may have concentration points of volume, local
(¢ + 1)—powered integral, at infinite time, by the volume conservation |[u(t)|/s+1 = 1. Our main
purpose is to study such asymptotic behavior of a solution to the evolution equation above.

The first result is the global existence a weak solution of (1.1) and its regularity (see [6, 7]).

Theorem 1 (A global existence and regularity) Letp > 1 and p < ¢+ 1 < p*. Suppose
that ug belongs to WP (Q), is nonnegative, bounded, ||uo||oo < 00, and |[uo|lqr1 = 1. Then, there
exists a global weak solution u € C ([0, 0o); LIT(€2)) NL>(0, oo; WyP(Q)) of the Cauchy-Dirichlet
problem (1.1), satisfying the energy inequalities

(1.2) [u®llgrr =1,  VE=0,
41
(13) 1000”5 (2 0y + sup E(u(t)) < Euo),
0<t<oco
where E(u) := ||Vul[b/p is the p—energy of u. Moreover, the solution u is positive and bounded,

0 < u(t,z) < ePPolt/a|yg||o for any (t,z) € oo, and u and its spatial gradient Vu are locally

in time-space continuous in Q.

We shall study the asymptotic behavior around infinite time of the global solution to (1.1)
obtained in Theorem 1. The global solution of (1.1) strongly or weakly converges to a limit
function in VVﬁ)f (©) along a time-sequence increasingly tending to oo and the limit function is
naturally a weak solution of the stationary equation corresponding to (1.1);. In the case of weak
convergence, further, there may appear the so-called energy and volume gap at infinite time,
leading to energy and volume concentration.

The asymptotic profile at a concetration point of the global soluton of (1.1) is shown in the
following result. Applying the concentration-compactness result, we obtain a characterization of

concentration of volume and energy on a microscopic scale, where the term microscopic is borrowed
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from the result [12, Lemma 3.4, p.72] for the case p = 2. To state the result, let py be a fixed small
positive number. Let 7 = n(x) be a smooth function on IR™ such that n = 0 outside B(0, pg) and
n=1on B(0,pp/2).

Theorem 2 (Concentration-compactness) Let f—fz <p<nandq+1=p*. Let{ty}, tx /0
and {rr}, rr \y 0 as k — oo. There exist a subsequence {ty} (non-relabelled), an integer N,
N—points {x;} C Q, subsequence {ry;} and a sequence Ly ; /* o0 ask — o0, i =1,...,N, such

that the follwoing convergence holds true:

atl-p

u(w,te) = 3 Lii (v) (L (w—m)) — s (@)

. strongly and locally in N — 00),
1.4 ly and locall whten LY RY) (k

where v is a positive and bounded weak solution of —div(|[Vv[P~2Vv) = Aov? in IR™ with a positive
constant Aoy, and v and its gradient Vv are locally continuous in IR™. Moreover, the volume and

energy decompositions appear at time infinity: As k — oo,

(1.5) V(u(ty)) — V(ueo) + NV(v),
(1.6) E(u(tr)) — E(use) + NE(v),

where we put

V(u) :/uLH'1 dz, V(u) = /uq+1 dz,
Q R"

E(u) :/‘VUVJ dzx, E= / [VulP de.
Q R"

We shall explain the implication of Theorem 2. For this purpose we recall some results on the
asymptotic convergence of the Palais-Smale like sequence. In the Laplacian case p = 2 we have the
global compactness result established by Struwe ([14]). The result was extended to the p—Laplacian
case for 1 < p < n (see [10, 11, 3]). Theorem 2 establishs the so-called volume and energy equalities
and thus, completely characterizes the asymptotic behavior as infinity-time of the nonnegative
solutions to (1.1). See [14, Proposition 2.1, p. 513], [10, Theorem 1.2, pp. 471-472] for the case
1<p<n.

The limit function v at time-infinity in Theorem 2 is given as the extremal function attaining the
best constant in the Sobolev inequality, called Talenti function. Refer to [15] for the Laplacian

case, [13, 2, 17] for the p—Laplacian case.

— 311 —



R 55985
2 Preliminary estimate

We present the local boundedness available for a nonnegative weak solution to (1.1), obtained
in Theorem 1. This is the key estimation for showing the volume concentration at the limit as

time tends to oo of a solution of (1.1).

Lemma 3 (Local boundedness) Let 1 < p < n and g+ 1 = p*. Suppose that u is a nonnegative
weak solution to (1.1), obtained in Theorem 1. Let ro be a positive number satisfying roE(ug) < 1
and Q(ro) = B (xg,r0) X (to — (10)P, to) C Qoo. Put v = w, There exists a positive constant
5o = So(n,p, q) < 1 such that the following holds true: For any positive number §y < 50, there

exists a positive number ko such that

1/~
1 1 1 1 witt
2.1 ko > ———, == | — 4+ = ,
@1) CT sy 6o | ¥ Phe  1QI) KET

where Q(ko,r0) = B (mo, kép_(q“))/pro) x (to —rh, to), and there holds
(22) u(xo,to) < 4ky.

The proof of Lemma 3 is based on De Giorgi’s type local energy estimates for truncated solutions,
of which the detail will be appeared in a fothcoming paper. Here we shall show how to determine
the local boundedness constant, of which the way is intrinsic to a solution and may be of its own

interest. We emphasize that the equation (2.1) corresponds to (2.3) in the following proposition.

Proposition 4 (Intrinsic local boundedness) Let rg > 0 and &y € (0,1). Let Q(ro) = B (xo, 79) X
(to — (10)?, to) C Qoo. Put 5 = @ and v = w (so that B+~ =q+1=p*). Then there
is a unique positive real number ko such that if u € LIT(Q(ro)) and u > 0, then there is a unique

solution ko, ko > 1y " "oy, to the equation

1/~
1 kot u?
2.3 ko = — 0 +][ —u” dx dt ,
( ) 0 60 T’Ser ) kg
Q(ko,r0)

where Q(ko,r0) = B (370, kép7<q+l>>/p7“o) x (to — (r0)?, to) . Moreover, the root satisfies kg =
k(u,79,00) /00 as ro N0 or dp N\, 0.
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Proof. Since

8 Pt 5 atiop)
f %u“’ dx dt = %7 / W da dt
K B, )]

Q(ko,r0) Q(ko,r0)

and

n n n—
B+ (g l-p) = —g—1+ g+ ) —n=y+ L+ —n=1,

we have that

1/~
k*1+’Y B
OnJr +][ u—ﬂu”’ dx dt
ro " ky
Q(ko,r0)
1/
1 1 1
2.4 =k - T g dt
(24) 0 ﬁ“’ko+U%QUI(/ v
Q(ko,r0)
The function
1 1 1
ko — h(k hko) = —— | — + ——— T dt
0 ( 0)7 ( 0) T6L+p kO + lB(O,l)‘ / u T 5

Q(ko,mo0)
is continuous and strictly decreasing function of ko and h(ko) J 0 as ko 1 oo for any given ¢ > 0.
Moreover h(r, " ") > 1. Therefore there must be a unique k§ > r, "~ ? such that

h(kg) = 67 .

It is easy to see that this root converges to infinity as rg or Jy tends to zero. This proves the claim.

O

By the use of Lemma 3 we show the uniform local boundedness for solutions of (1.1).

Lemma 5 (Uniform boundedness) Let 1 < p < n and g+1 = p*. Suppose that u is a nonnegative
weak solution to (1.1), obtained in Theorem 1. Suppose that, for some positive numbrs g, ro < 1

and Q(ro) = B(xo, 10) X (to — 15, to) C Qoo,

to

+1
(25) F 1Oy g < 0

_pP
to o
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Then there holds, for positive numbers r{, = r{(ro,e0), C = C(rg,e0) and Q(r{) = B(xo, r}) X

(to = (r0)"; to),

(2.6) sup  Ju| < C.
(2, HEQ(T)

Proof. Let (z(,t)) € Q(ro/2) be an arbitrarily taken and fixed. We shall employ Lemma 3
for the proof, where r¢ and (xo,tp) are replaced by r¢/2 and (x{,t(), respectively. Clearly,
Q' (ro/2) = B(xzy,ro/2) x (t, — (ro/2)?,t,) is contained in Q(rg). Let kg be chosen as in

(2.1) of Lemma 3. From n(p_;q+1)) = —nrf)p =—(¢g+1) and (2.5), it follows that, letting

Q'(ko,r0/2) = B (s kP (r0/2)) x (th = (ro/2), )
q+1 n+p n+p
(2.7) ][ L dpdt = 271” / W dgd < 20

kgt o P IB( eI BI
Q' (ko,0/2) Q(ro)

where we note that ko > 1 by dp < 1 and o < 1. Choosing k{, > ko so large that

2n+P50
o B(1)]

n+p
2.8) 1( 1 2ntre

— is very close to
5 \ri 7wy r3|B<1>|) Y
we obtain from (2.2) in Lemma 3 that

(2.9) u(xg, ty) < 4ky  for any (z(,t0) € Q(ro/2).

Here we notice the dependence of k), k{ = k{ (10,00, €0, n,p), and thus, the assertion (2.6) follows
, p=(at1)

from (2.9), letting 7 = (ko) 7 (ro/2)(< 10/2). 0

3 Concentration phenomenon

We shall present the proof of Theorem 2. For this purpose we prepare two lemmata.

First we shall show the asymptotic behavior of the global solution of (1.1), obtained in Theo-
rem 1. This controls the global solution of (1.1) at infinite time and leads to deriving the asymptotic

convergence to a limit function which is a stationary solution corresponding to (1.1).

Lemma 6 (e—strong compactness) Let nQ—fQ <p<mnandq+1=p* Let{ty}, ty / o0 as

k — oco. There exist subsequence {tx} (non-relabelled), a positive number ey > 0 and at most finite
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points {x1,...,xny} C Q, 0 < N < 00, such that there holds for any positive number r < 1 and all
i=1,...,N,

tr

(31) i [ (O s, 2 20

ty—rP

and the sequence {u(ty)} is strongly convergent in the Sobolev space WP on any compact subset

of Q\{z1,...,xNn}.

Proof. First we notice that the conditions, ng—fz <p<nandqg+1=p* imply that ¢ > 1. Let
u be nonnegative weak solution to (1.1), obtained in Theorem 1.

We shall show the following: There exists a sequence of times {7}, 7 00 as k — oo such
that the sequence of solutions {u(7y)} converges to a weak solution of the stationary equation
corresponding to (1.1).

First we take a subsequence {t/} of {#;} such that ¢}/, —#;/ > 1forall k =1,... and #;] /oo as
k — oo. Write as I(k) = (tg, t;c’ﬂ), k =1,.... Now we prove that there exists a sequence {71}

such that 7, € I(k), k=1,..., 7. /00 as k — o0 and
(3.2) lim /|3tuq(7'k)| dx = 0.
k— o0
Q

Indeed, by (1.3) in Theorem 1 there holds

Z][/’@tu; d:cdt<//‘3 =

k=1r(ky @
where we use that the length |I(k)| of I(k) is larger than 1 by the choice of ¢}/. From the mean-value

da: dt < oo,

theorem, for each k =1, ... there exists a number 74, € I(k) such that, as k — oo,
g+1 2 q+1 2
/ ‘(’%UT(T;C)‘ dx < / ‘@UT dx dt — 0.
Q 1(k)

For g > 1 the chain rule of weak differential enables us to compute as

2 g-1 at+1
(3.3) O = qflqu BT,

since the function za+T is locally Lipschitz on z € [0,00). The fact above and the Holder inequality
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yield the estimation

2 a1 a+1
Ovu (i) de < —L-||u*T (1) |2 l|0eu T (1)
qg+1
Q

2(] 1 a—1 q+1

< ——=Q[7 T sup [lu(®)| 2y [0 ()12
q+1 te(0, 0o) ot

a-1 g+l
< luollg£1 10w (7)||l2 — 0

as k — oo, which gives (3.2).

Next we claim that the integral equation

(3.4) / (0 (1) + | Vul’ > Vu(ri) - Vo — (Mu?)(1)¢) dz =0

Q
holds true for any ¢ € C§°(Q).
Let 0 < g,h N\, 0 and define a cut-off function on time 7, = n,(¢t) such that n, is Lipschitz on IR,
np=1in[rx —e+h, m+e—hl,np, =0in R\ (7, — ¢, 7% +¢) and |Oynp| < 1/h in R. Then,
we use the test function ¢n, in the weak form of (1.1);. Noting the integrability of each term

appearing in the resulting equality, by the Lebesgue convergence theorem we pass to the limit as

h ™\, 0 and have

e
/ (O + |VulP"*Vu - V¢ — (\u?)¢) do » dt =0
ro—e \Q

and then, dividing the both side of the above equation by 2¢, from the Lebesgue’s differenrtial
theorem available for integrable functions we can take the limit as € N\, 0 in the resulting equation
to obtain the claim (3.4).

From (1.2) and (1.3) in Theorem 1 we see that the sequence {u(7;)} is bounded in WP(Q)
and thus, by the compactness of Sobolev empbedding into the Lebesgue space we have a (non-
relabeled) subsequence {73}, the limit function w € W, *(2) and a finite number A, such that,

as k — oo,

u(ty) — w weakly in WP (Q),
u(Te) — w strongly in L"(Q2), Vr € [1,p"), and almost everywhere €,
(35) )\(Tk) — )\oo,

where we use Mazur’s theorem verifying that the closed subspace Wy?(Q) of WP(Q) is weakly
closed in W1P(Q).
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We also have the following strong convergence of gradients: There exists a (non-relabeled) subse-

quence {u(7g)} such that
(3.6) Vu(re) — Vw strongly in L"(Q2), Vr € [l,p),

of which the proof is referred in [9, Lemma 5.3, p. 19, Appendix E, p. 43].
By means of the convergences (3.2), (3.5) and (3.6) we have the identity holding true for any
¢ € C®(Q)

(3.7) / (IVwP"*Vw - V¢ — Aow?¢) dz = 0.

Q

Further we can verify that the sequence {u(7x)} strongly converges to the limit w in WP(Q\

N) for some set of finitely many points N = {x1,...,2x}. In fact we shall demonstrate the
convergence
(3.8) Vu(rg) — Vw strongly in L (Q\N).

For the proof we shall employ the local boundedness of the solution to (1.1).
Fix 2o € Q and assume that for some positive ro < 1 there holds

Lk

s g+l
hkrr}(lorgf][ Hu(t)”L‘H'l(B(xg,ro)) dt < eo.
tkf'rg
Then we choose a subsequence {¢}.} of {¢x} such that
t,
+1

(3.9) F IO <

t;@—rg
Applying Lemma 5 with (3.9), we have positive numbers r{ = r{(ro,£0), C = C(ro,e0) and
Q(ro; xo, 1)) = B(xo, 14) x (t}, — (r)?, t),) such that

(3.10) sup  |u| < C,

Q(ro;%0,t )

yielding the uniform boundedness in B(zg, 7o) of the solutions {u(t})}, k=1,....

Next we shall show the validity of the following convergences as k — oo:

(3.11) Ovu(Te) (u(te) — w) de — 0,
/
(3.12) (u? (1) — w?) (u(7) — w) dz — 0.

B(0,7)/2)
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Noting (3.3) again we estimate as

/\atu(Tk)Hu(Tk)—wMa: < qi—ql/@u%(m)\ (uqzi(m)ﬂ%(m)m\) da
Q Q

2 a+1 arl -
(3.13) < L0 @l ()l 2+ e Il )

where the Holder inequality is used in the second inequality with ¢ > 1. Thus, the convergence
(3.11) follows from (3.3).

For the proof of (3.12) we note the strong integral convergence as
(3.14) u(T) — w strongly in L7(B(zo,7()) for any finite v > 1,

by the use of the convergence (3.5)2 and the uniform boundedness (3.10). By the Hélder inequality

we simply estimate and take the limit as k — oo in the resulting inequality as

/ [ (72) — w0 fu(ry) — w] de < / (u(m)l? + [w]?) fu(ry) — w] do

B(zo,7() B(x0,7()
< (Hu(Tk)HZH + le|3+1) (i) = wllLa+1 (Bag,r)) — 0,
where the convergence (3.14) is used in the last line. The validity of (3.12) is shown.

Here we recall the algebraic inequalities as follows (Refer the proof in [1, Lemma 2.2] and [4,

inequality (24)]) : There holds for any vectors P, @ € IR™ that

(IPP2P = 1QPTQ) - (P = @) 2 CL (1P +1QD" % [P - QF,
(3.15) IPP72P = |QI*Q) < C2 (I1PI+1QN"* 1P - QI
Now we subtract (3.7) from (3.4) and use the test function n? (u(7x) — w) in the resulting equation,

where the function n = n(z) is Lipschitz on IR™ such that n = 1 in B(xg,7(/2), n = 0 outside
B(zg, ) and |Vn| < 2/r{. By the use of (3.15) we have, if p > 2,

c’ / 7’ [Vu(ri) — Vwl|? dz
B(zo,7()

<C / IVal* (Vu(m)] + [Vw)? ™ fu(me) — w|* de

B(xo,r()

- / 0 Owu(mk) (u(mh) — w) dz 4+ Ao / n® (u (1) — w?) (u(rk) — w) da

B(zo,7() B(zo,r()
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(3.16) + (A7) = Ax) / 7w (i) (u(r) — w) de

B(zo,7()

—0 as k — oo,

where we use the convergences (3.11), (3.12) and (3.5)3.
If 1 < p <2 we use (3.15) to have the inequality

n? |Vu(r) — Vwl|? d

B(zo,7()

< / 7 (IVu(m)| + [Vl [Vu(ry) — Vol de

B(z0.7})

X / 7 (V)] + |Vl do

B(zo,7()

[V

<C / 7 (|Vu(Tk)\p72Vu(Tk) — |Vw\p72Vw) - (Vu(tk) — Vw) dzx
B(zo.7()

2—p

X / 7 ([Vu(r)| + [Val)? de

B(zo,7()

At this stage we evaluate the last term in the above inequality. The integral term in the 1st brace
is equal to the same as 3rd one in (3.16) and the integral term in the 2nd brace is bounded by (1.3)
in Theorem 1. Thus, from the same reasoning as (3.16) this last term converges to 0 as k — oc.
Therefore we have that Vu(ry) converges to Vw strongly in LP(B(zg,7,/2)) as k — oo. The con-
vergence (3.8) follows from by a usual covering argument with the strong convergence of gradients
above.

The finiteness of concetration points N in (3.1) is verfied as follows: We compute as

N BN
+1 _ +1
S IO @ = S IO
i:1t’ —rP t! —rP i=1
k 0 k 0

!
t

o q+1
—][ Hu(t)l Lat1(UN | B(z,70)) dt

’r_.P
tk L
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1
< Iz =1,
t;c—rg

where we use (1.2) in the last line. Taking the limitinf on & * oo in both side of the above

inequality yields the estimation

’
tk

N :
. . 1
Neo < E lin/l‘g.}f][ [T P eprm—
1=1

!’ _ P
tk s

N
.. q+1
< hkn}‘g;f E f Hu(t)HLQ+1(B(zi,T0)) dt <1
z:ltk_rg

and thus,
(3.17) N < —.

The proof of Lemma 6 is completed. |

The next result yields the asymptotic profile around a concetration point at infinite time of the

global soluton of (1.1).

Lemma 7 (Volume and energy concentration) Let f—fz <p<nandqg+1=p*. Let{ty},
tr /oo and {ri}, rr \¢ 0 as k — oo. There exist a positive number €y > 0, an integer N,
N—points {x;} C Q, subsequences {t;}, {rx:} and a sequence of positive numbers Ly ; /* 0o as
k—o00,i=1,...,N, such that the followings hold for each x;, i =1,..., N: For brevity, letting

!
o' =, ty = tpy, T = Tk and Ly = Ly,

.. +1 .
B inf [lu(t) e (5ear, 1) 2 203

p—(q+1)

vp(x) == Ly 'u (1:/ +L, * o« tk> — v(x)
(3.18) strongly and locally in WP N LITH(IR™) (k — o),
where v is a positive and bounded weak solution of —div(|[Vv[P~2Vv) = Aoov? in IR™ with a positive

constant Moo, and v and its gradient Vv are locally continuous in IR'™.

Proof. Let zg =x;,i=1,...,N be any point where (3.1) holds true for any positive r < 1. Let

{tr}, tx /" 00 as k — oco. Let {r;} be a sequence of postive numbers r; \, 0 as [ — oo. Then, by
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(3.1) we have, for any r, I =1,.. .,

ty

(319) ot O g > 50

t—(r)P

and from the mean-value theorem there exists a number tg;, tp— ()P <ty < tj foreach k,l=1,...

such that
ty
41 41
(3.20) Pl = f IO
tp—(r)P

By Cantor’s diagonal argument, (3.19) and (3.20) we can take subsequences {r}.} of {r;} and {¢},}
of {tx;} such that t — (r},)? <t} <ty and

thow 00, 5 N\ 0 as k — oo,
P ’ q+1 €0
(3.21) hkn}g;f l[u(thr)] LaF1(B(zo, 7)) 2 o

Let us write {t}, } as {tx} and {r}} as {r}.

Hereafter we shall fix k = 1,... and write as to = t; and ro = r,. Let Q(ro) = B(zg,r9) X
(to — (r0)P,to). Let (z(,t)) € Q(ro) be arbitrarily taken and be fixed. Make a local prabolic
cylinder Q' (ro) = B(x(, 10) X (t, — (ro)?, t) with vertex at (z(,t,). We now employ Lemma 3 in

Q' (r0). Thus, we have positive numbers §y < 1 and L’ such that

L'>(ro)™""6, 7,

QI(LI7TO) =B (33(/), (L/)(P—(‘H'l))/pro) X (t6 - (TO)pa té)) )

1/~
1 1 1 wdtl
3.22 1=— + — — dxdt ;
(3.22) do | (ro)™™2L" ~ |Q/(L',r0)] / (Lt ©°
Q'(L' 7o)
(3.23) u(xg, to) < 4L'.

Here, in (3.22)5 and (3.23), the positive number L' may depend on (x(,t)). Now we claim that

the positive numbers L’ is bounded uniformly on (z{,t). Indeed there exists a positive L > L’

such that

L > (2ro) " 76,7,

1 1 1 2
3.24 Hlgrdt | < ——o / T gz dt
(3.24) & | oy T 10 / o (60)71Q(ro)] o

Q(2ro) Q(2r0)
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Because the positive constant L in (3.24) does not depend on any (x(,t)) € Q. In fact, for any

positive [ > 1 and any point (z(,t,) € Q(ro), Q'(l,ro) is contained in Q(2r¢) and thus, we have,

1/
1 1 1 udtt
— = dx dt
o (7’0)"+pl+|Q’(l,ro)| / Jatt
Q’(l,r0)
1/~
1 1 1
= — + wI™ do dt
do | (ro)"*t2l ~ |B(1)rgt? /
Q' (l,r0)
1/y
1 1 1
3.25 = T dg dt
(3.25) <% \ o7l T Q00 /U ’
Q(27r0)

L’ is a root of the equation (3.22) and L is that of the equation: 1 = the left hand side of (3.24),
and thus, L doed not dpend on (zg,t)) € @ and L' < L.

Therefore from (3.23) and the observation above it follows that
(3.26) u(xg, ty) < 4L for any (z(, 1)) € Q.

We write L as L to indicate the dependence of L on t; and r;. Now we introduce the scaled

solution defined as

p—(q+1)
u(xo—FLk P, tk—|—t>

(3.27) vg(z,t) = i ,

atl—p

(z,t) € Q'(k) = B(k) x J(k), B(k)=B (0, reLl, > s Jk=(—(re)", 0).

From (3.24)1, the space-width of Q’(k) is computed as

atl-p Y —p(l4ntp)—n

(3.28) Ly, T > (60) =P (ry) n=p Soo as k— oo,

—p(l+ntp)—n
n—p
k — oo, and thus, the sequence of sets {Q'(k)} converges to all of space IR"™. By (3.26), we have

because < 0 and dy is a fixed positive number, and the time-length ()P N\, 0 as

the boundedness

(3.29) sup v <4
Q' (k)

and compute the integral quantities of vy for any ¢ € (—(rx)?, 0), as
(3.30) ok () lLatr )y = lwlte + OllLatt By, r)»
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(3.31) IVor ()l e (Br)) = IVults + )| Lo (Bo,r)s
0 ty
o2 LRSI
(3.32) 10ev, 2 (ON2(Bw) dt = 10cu™2 (DI 22(B (20, /2)) AL
—(rK)? t—(re)P

By virtue of the boundedness (1.2) and (1.3) we can argue similarly as (3.2)-(3.7) to have sub-
sequences {t;}, {r}} (non-relabelled), a sequence {7x} and the limit v € WP N LI*1(IR™) such
that

(3.33)
thyr —tp > 1, % € (t;C — (re)?, t;c) forall k=1,...,
atl 2
/ 0w, (k)| dex — 0 as k — oo,

B(k)

/ (Btvg(ﬂg)d) + [Vor (1) [P 2 V(1) - Vg — ()\vg)(m)) der=20 for all ¢ € C§°(IR™),
Bn

vk(T) — v weakly in WP (IR™),

vk(T8) —> v strongly in L"(IR™), Vr € [1,p*), and almost everywhere IR",

ATr) — oo,

Vo (ms) — Vv strongly in L"(IR™), Vr € [1,p),

/ (IVo[P°Vo - Vo — Asov?¢) dz =0 for all ¢ € C5°(IR™).

R"

Further we have the strong convergence of gradients
(3.34) V(1) — Vv strongly and locally in L?(IR"),

of which the proof is performed similarly as in (3.11)-(3.16) by the use of (3.29).

Finally, the limit function v is a non-negative bounded weak solution of the stationary equation
on IR™ as (3.33)s, where the boundedness follows from the boundedness (3.29) and the almost
everywhere convergence (3.33)5, and thus, v and its gradient Vv are locally continuous in IR"™
by the regularity of the p—Laplace equation. The limit v is not identically zero in IR™ from the
non-vanishing local-volume (3.21) and the strong convergence (3.33)5 and thus, v is positive in IR™
by the strong maximum principle for the p—Laplace operator in [16].

The proof of Lemma 7 is completed. O
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Proof of Theorem 2. Now we shall give the proof of Theorem 2.

The validity of (1.4) follows from (3.18) in Lemma 7, where we choose the time-sequence {t}
as the common subsequence of {t;;}, ¢ = 1,..., N. Any boundary concentration never appears
because the limit function around a concentration point on boundary 0f2 is a positive stationary
solution with zero Dirichlet boundary condition in the half space IR"}, which, however should be
trivial from the Liouville type result in [10, Theorem 1.1, pp. 470-471], where the strong maximum
principle takes an important role (refer to [16]). Thus, the concentration points are only in the
interior of the domain €.

The volume and energy concentrations (1.5) and (1.6) is shown similarly as in [10, Proof of Theorem
1.2, Sect. 4]. Here we notice that the solutions {u(tj)} of (1.1) is just a Palais-Smale like sequence
for the functional (1/p)E(u) + (1/(¢ + 1))Ase V(1) on W, P (), which is verified in the proof of

Lemma 6. O

&!l

i3

MFRSSE L, RECODEDMABLIVABETO ZERIZWANARBENS ST L. HF%E/RE) Z
BB RB DEMOFEDER VLR ELVAAITNERITE VRS, HOPL S TS VE L. TED
REZ SN TE XL THECRFREERA LA HEE TRIZER ¢ 2 i) IS THREOKR %
(EEDTZZOANATEH L TED £ 5. BRFEEDOARS L D IE 7 WANARHEETLE. &
B SEED TS, BT 5 e TR LTED £7.
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